36 resultados para resident
em CentAUR: Central Archive University of Reading - UK
Resumo:
Previous anthropological investigations at Trentholme Drive, in Roman York identified an unusual amount of cranial variation amongst the inhabitants, with some individuals suggested as having originated from the Middle East or North Africa. The current study investigates the validity of this assessment using modern anthropological methods to assess cranial variation in two groups: The Railway and Trentholme Drive. Strontium and oxygen isotope evidence derived from the dentition of 43 of these individuals was combined with the craniometric data to provide information on possible levels of migration and the range of homelands that may be represented. The results of the craniometric analysis indicated that the majority of the York population had European origins, but that 11% of the Trentholme Drive and 12% of The Railway study samples were likely of African decent. Oxygen analysis identified four incomers, three from areas warmer than the UK and one from a cooler or more continental climate. Although based on a relatively small sample of the overall population at York, this multidisciplinary approach made it possible to identify incomers, both men and women, from across the Empire. Evidence for possible second generation migrants was also suggested. The results confirm the presence of a heterogeneous population resident in York and highlight the diversity, rather than the uniformity, of the population in Roman Britain. Am J Phys Anthropol 140:546-561, 2009. (C) 2009 Wiley-Liss, Inc
Resumo:
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Resumo:
Disproportionately little attention has been paid to the dry season trade-off between rice and (inland capture) fish production on the floodplains of Bangladesh, compared to the same trade-off during the flood season. As the rural economy grows increasingly dominated by dry-season irrigated rice production, and floodplain land and water come under ever-increasing pressure during the dry winter months, there is an urgent need to focus attention on these dry months that are so critical to the survival and propagation of the floodplain resident fish, and to the poor people that depend on these fish for their livelihood. This article examines three important dry-season natural resource constraints to floodplain livelihoods in Bangladesh, and finds a common factor at the heart of all three: rice cultivation on lands at low and very low elevations. The article articulates the system interlinkages that bind these constraints and the long-run trend towards irrigated rice cropping on lower-lying lands, and suggests a management approach based on locally tailored strategies to arrest this trend. Apart from its direct relevance to the floodplains of Bangladesh, which support more than 100 million people, these lessons have relevance for river floodplain systems elsewhere in the developing world, notably the Mekong Delta.
Resumo:
P>1. Ants show complex interactions with plants, both facultative and mutualistic, ranging from grazers through seed predators and dispersers to herders of some herbivores and guards against others. But ants are rarely pollinators, and their visits to flowers may be detrimental to plant fitness. 2. Plants therefore have various strategies to control ant distributions, and restrict them to foliage rather than flowers. These 'filters' may involve physical barriers on or around flowers, or 'decoys and bribes' sited on the foliage (usually extrafloral nectaries - EFNs). Alternatively, volatile organic compounds (VOCs) are used as signals to control ant behaviour, attracting ants to leaves and/or deterring them from functional flowers. Some of the past evidence that flowers repel ants by VOCs has been equivocal and we describe the shortcomings of some experimental approaches, which involve behavioural tests in artificial conditions. 3. We review our previous study of myrmecophytic acacias, which used in situ experiments to show that volatiles derived from pollen can specifically and transiently deter ants during dehiscence, the effects being stronger in ant-guarded species and more effective on resident ants, both in African and Neotropical species. In these plants, repellence involves at least some volatiles that are known components of ant alarm pheromones, but are not repellent to beneficial bee visitors. 4. We also present new evidence of ant repellence by VOCs in temperate flowers, which is usually pollen-based and active on common European ants. We use these data to indicate that across a wide range of plants there is an apparent trade-off in ant-controlling filter strategies between the use of defensive floral volatiles and the alternatives of decoying EFNs or physical barriers.
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor 'remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell, surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is Possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation. (C) 2005 by The American Society of Hematology.
Resumo:
Both environmental and genetic factors contribute to cancers of the gastrointestinal tract including, the stomach, colon and rectum. The mechanisms associated with gastrointestinal cancer causation and prevention are largely unknown and the subject of much research. Many of the proposed mechanisms implicate the metabolic activities of the bacterial biota normally resident in the gastrointestinal tract. This review examines both the adverse and beneficial consequences of bacterial activity of the gastrointestinal tract focusing, in particularly on the stomach and large intestine. Studies on the role of the bacterial biota in colon carcinogenesis have also resulted in several useful biomarkers for use in human.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
The activities of the bacteria resident in the colon of companion animals can have an impact upon the health of the host. Our understanding of this microbial ecosystem is presently increasing due to the development of DNA-based microbiological tools that allow identification and enumeration of nonculturable microorganisms. These techniques are changing our view of the bacteria that live in the gut, and they are facilitating dietary-intervention approaches to modulate the colonic ecosystem. This is generally achieved by the feeding of either live bacteria (probiotics) or nondigestible oligosaccharides (prebiotics) that selectively feed the indigenous probiotics. Feeding studies with a Lactobacillus acidophilus probiotic have shown positive effects on carriage of Clostridium spp. in canines and on recovery from Campylobacter spp. infection in felines. Immune function was improved in both species. Prebiotic feeding studies with lactosucrose and fructo-oligosaccharides in both cats and dogs have shown positive effects on the microflora balance. Recently synbiotic forms (a probiotic together with a prebiotic) targeted at canines have been developed that show promise as dietary-intervention tools.
Resumo:
The human colonic microflora has a central role in health and disease, being unique ill its complexity and range of functions. As such, dietary modulation is important for improved gut health, especially during the highly-sensitive stage of infancy. Diet call affect the composition of the gut microflora through the availability of different substrates for bacterial fermentation. Differences in gut microflora composition and incidence of infection exist between breast-fed and formula-fed infants, with the former thought to have improved protection. Historically, this improvement has been believed to be a result of the higher presence of reportedly-beneficial genera such as the bifidobacteria. As such, functional food ingredients such as prebiotics and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants by increasing positive flora components. The prebiotic approach aims to increase resident bacteria that are considered to be beneficial for human health, e.g. bifidobacteria and lactobacilli, while probiotics advocates the use of the live micro-organisms themselves in the diet. Both approaches have found their way into infant formula feeds and aim to more closely simulate the gut microbiota composition seen during breast-feeding.
Resumo:
Ulcerative colitis is a severe, relapsing and remitting disease of the human large intestine characterised by inflammation of the mucosa and submucosa. The main site of disease is the sigmoid/rectal region of the large bowel but the aetiology remains unknown. There is considerable evidence to indicate that the components of the resident colonic microflora can play an important role in initiation of the disease. The present study was aimed at characterising the faecal microflora of ulcerative colitis patients in remission and active phases to determine profile differences. Faecal samples were obtained from 12 patients, 6 with active colitis and 6 in remission. The samples were analysed for populations of lactobacilli, bifidobacteria, clostridia, bacteroides, sulphate-reducing bacteria (SRB) and total bacteria using culture independent fluorescence in situ hybridisation (FISH). Lactobacillus-specific denaturing gradient gel electrophoresis (DGGE) was then performed to compare the species present. Numbers of lactobacilli were significantly lower (p<0.05) during the active phase of the disease but the other populations tested did not differ. DGGE analysis revealed that Lactobacillus salivarus, Lactobacillus manihotivorans and Pediococcus acidilactici were present in remission, but not during active inflammation. These results imply that a reduction in intestinal Lactobacillus species may be important in the initiation of ulcerative colitis.
Resumo:
Adult skeletal muscle possesses a resident stem cell population called satellite cells which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration but is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. Here the process of satellite cell migration has been investigated revealing that they undergo two distinct phases of movement; firstly under the basal lamina and then rapidly increasing their velocity when on the myofibre surface. Most significantly we show that satellite cells move using a highly dynamic blebbing based mechanism and not via lamellopodia mediated propulsion. We show that nitric oxide and non-canonical Wnt signalling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Resumo:
BACKGROUND: The absorption of cocoa flavanols in the small intestine is limited, and the majority of the flavanols reach the large intestine where they may be metabolized by resident microbiota. OBJECTIVE: We assessed the prebiotic potential of cocoa flavanols in a randomized, double-blind, crossover, controlled intervention study. DESIGN: Twenty-two healthy human volunteers were randomly assigned to either a high-cocoa flavanol (HCF) group (494 mg cocoa flavanols/d) or a low-cocoa flavanol (LCF) group (23 mg cocoa flavanols/d) for 4 wk. This was followed by a 4-wk washout period before volunteers crossed to the alternant arm. Fecal samples were recovered before and after each intervention, and bacterial numbers were measured by fluorescence in situ hybridization. A number of other biochemical and physiologic markers were measured. RESULTS: Compared with the consumption of the LCF drink, the daily consumption of the HCF drink for 4 wk significantly increased the bifidobacterial (P < 0.01) and lactobacilli (P < 0.001) populations but significantly decreased clostridia counts (P < 0.001). These microbial changes were paralleled by significant reductions in plasma triacylglycerol (P < 0.05) and C-reactive protein (P < 0.05) concentrations. Furthermore, changes in C-reactive protein concentrations were linked to changes in lactobacilli counts (P < 0.05, R(2) = -0.33 for the model). These in vivo changes were closely paralleled by cocoa flavanol-induced bacterial changes in mixed-batch culture experiments. CONCLUSION: This study shows, for the first time to our knowledge, that consumption of cocoa flavanols can significantly affect the growth of select gut microflora in humans, which suggests the potential prebiotic benefits associated with the dietary inclusion of flavanol-rich foods. This trial was registered at clinicaltrials.gov as NCT01091922.
Resumo:
There is considerable interest in the bioavailability of flavan-3-ols such as tea catechins and their bioactivity in vivo. Although flavanols such as catechin and epicatechin have long been characterized as powerful antioxidants in vitro, evidence suggests that these compounds undergo significant metabolism and conjugation during absorption in the small intestine and in the colon. In the small intestine these modifications lead primarily to the formation of glucuronide conjugates that are more polar than the parent flavanol and are marked for renal excretion. Other phase II processes lead to the production of O-methylated forms that have reduced antioxidant potential via the methylation of the B-ring catechol. Significant modification of flavanols also occurs in the colon where the resident microflora degrade them to smaller phenolic acids, some of which may be absorbed. Cell, animal and human studies have confirmed such metabolism by the detection of flavanol metabolites in the circulation and tissues. This review will highlight the major sites of flavanol metabolism in the gastrointestinal tract and the processes that give rise to potential bioactive forms of flavan-3-ols in vivo.
Resumo:
In 1999, Elizabeth Hills pointed up the challenges that physically active women on film still posed, in cultural terms, and in relation to certain branches of feminist theory . Since then, a remarkable number of emphatically active female heroes have appeared on screen, from 'Charlie’s Angels' to 'Resident Evil', 'Aeon Flux', and the 'Matrix' and 'X-Men' trilogies. Nevertheless, in a contemporary Western culture frequently characterised as postfeminist, these seem to be the ‘acceptable face’ – and body – of female empowerment: predominantly white, heterosexual, often scantily clad, with the traditional hero’s toughness and resolve re-imagined in terms of gender-biased notions of decorum: grace and dignity alongside perfect hair and make-up, and a body that does not display unsightly markers of physical exertion. The homogeneity of these representations is worth investigating in relation to critical claims that valorise such air-brushed, high-kicking 'action babes' for their combination of sexiness and strength, and the feminist and postfeminist discourses that are refracted through such readings. Indeed, this arguably ‘safe’ set of depictions, dovetailing so neatly with certain postfeminist notions of ‘having it all’, suppresses particular kinds of spectacles in relation to the active female body: images of physical stress and extension, biological consequences of violence and dangerous motivations are all absent. I argue that the untidy female exertions refused in popular “action babe” representations are now erupting into view in a number of other contemporaneous movies – 'Kill Bill' Vols 1 & 2, 'Monster', and 'Hard Candy' – that mark the return of that which is repressed in the mainstream vision of female power – that is, a more viscerally realistic physicality, rage and aggression. As such, these films engage directly with the issue of how to represent violent female agency. This chapter explores what is at stake at a representational level and in terms of spectatorial processes of identification in the return of this particularly visceral rendering of the female avenger.