10 resultados para remnant-like particle
em CentAUR: Central Archive University of Reading - UK
Resumo:
Expression of the murine leukaemia virus (MLV) major Gag antigen p65(Gag) using the baculovirus expression system leads to efficient assembly and release of virus-like particles (VLP) representative of immature MLV. Expression of P180(Gag-Pol), facilitated normally in mammalian cells by readthrough of the p65(Gag) termination codon, also occurs efficiently in insect cells to provide a source of the MLV protease and a pattern of p65(Gag) processing similar to that observed in mammalian cells. VLP release from P180(Gag-Pol) expressing cells however remains essentially immature with disproportionate levels of the uncleaved p65(Gag) precursor when compared to the intracellular Gag profile. Changing the p65(Gag) termination codon altered the level of p65(Gag) and p180(Gag-Pol) within expressing cells but did not alter the pattern of released VLP, which remained immature. Coexpression of p65(Gag) with a fixed readthrough p180(Gag-Pol) also led to only immature VLP release despite high intracellular protease levels. Our data suggest a mechanism that preferentially selects uncleaved p65(Gag) for the assembly of MLV in this heterologous expression system and implies that, in addition to their relative levels, active sorting of the correct p65(Gag) and p180(Gag-Pol) ratios may occur in producer cells. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study the high-latitude plasma flow variations associated with a periodic (∼8 min) sequence of auroral forms moving along the polar cap boundary, which appear to be the most regularly occuring dayside auroral phenomenon under conditions of southward directed interplanetary magnetic field. Satellite data on auroral particle precipitation and ionospheric plasma drifts from DMSP F10 and F11 are combined with ground-based optical and ion flow measurements for January 7, 1992. Ionospheric flow measurements of 10-s resolution over the range of invariant latitudes from 71° to 76° were obtained by operating both the European incoherent scatter (EISCAT) UHF and VHF radars simultaneously. The optical site (Ny Ålesund, Svalbard) and the EISCAT radar field of view were located in the postnoon sector during the actual observations. The West Greenland magnetometers provided information about temporal variations of high-latitude convection in the prenoon sector. Satellite observations of polar cap convection in the northern and southern hemispheres show a standard two-cell pattern consistent with a prevailing negative By component of the interplanetary magnetic field. The 630.0 nm auroral forms located poleward of the persistent cleft aurora and the flow reversal boundary in the ∼1440–1540 MLT sector were observed to coincide with magnetosheath-like particle precipitation and a secondary population of higher energy ions, and they propagated eastward/tailward at speeds comparable with the convection velocity. It is shown that these optical events were accompanied by bursts of sunward (return) flow at lower latitudes in both the morning and the afternoon sectors, consistent with a modulation of Dungey cell convection. The background level of convection was low in this case (Kp =2+). The variability of the high-latitude convection may be explained as resulting from time-varying reconnection at the magnetopause. In that case this study indicates that time variations of the reconnection rate effectively modulates ionospheric convection.
Resumo:
Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
Almost all research fields in geosciences use numerical models and observations and combine these using data-assimilation techniques. With ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the models more nonlinear. Standard data-assimilation techniques like (ensemble) Kalman filters and variational methods like 4D-Var rely on linearizations and are likely to fail in one way or another. Nonlinear data-assimilation techniques are available, but are only efficient for small-dimensional problems, hampered by the so-called ‘curse of dimensionality’. Here we present a fully nonlinear particle filter that can be applied to higher dimensional problems by exploiting the freedom of the proposal density inherent in particle filtering. The method is illustrated for the three-dimensional Lorenz model using three particles and the much more complex 40-dimensional Lorenz model using 20 particles. By also applying the method to the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate the strong scale-invariance of the method, leading to the optimistic conjecture that the method is applicable to realistic geophysical problems. Copyright c 2010 Royal Meteorological Society
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.
Resumo:
Particulate antigen assemblies in the nanometer range and DNA plasmids are particularly interesting for designing vaccines. We hypothesised that a combination of these approaches could result in a new delivery method of gp160 envelope HIV-1 vaccine which could combine the potency of virus-like particles (VLPs) and the simplicity of use of DNA vaccines. Characterisation of lentivirus-like particles (lentiVLPs) by western blot, dynamic light scattering and electron microscopy revealed that their protein pattern, size and structure make them promising candidates for HIV-1 vaccines. Although all particles were similar with regard to size and distribution, they clearly differed in p24 capsid protein content suggesting that Rev may be required for particle maturation and Gag processing. In vivo, lentiVLP pseudotyping with the gp160 envelope or with a combination of gp160 and VSV-G envelopes did not influence the magnitude of the immune response but the combination of lentiVLPs with Alum adjuvant resulted in a more potent response. Interestingly, the strongest immune response was obtained when plasmids encoding lentiVLPs were co-delivered to mice muscles by electrotransfer, suggesting that lentiVLPs were efficiently produced in vivo or the packaging genes mediate an adjuvant effect. DNA electrotransfer of plasmids encoding lentivirus-like particles offers many advantages and appears therefore as a promising delivery method of HIV-1 vaccines. Keywords:VLP, Electroporation, Electrotransfer, HIV vaccine, DNA vaccine
Resumo:
A 24 h period of observations by the EISCAT radar and other ground-based instrumentation is used to study the role of plasma convection in determining the morphology of the high-latitude F-region during winter. It is suggested that, in the afternoon sector of the polar convection pattern, rapid zonal (westward) flows caused low F-region electron densities due to an extension of the mid-latitude trough far into the sunlit hemisphere. Low densities on the dawn side prior to 0600 UT may also have been due to a trough-like feature. Although the generation mechanism is unclear, the trough may be the fossil remnant of a substorm. Around midnight, high F-region densities were seen, probably due to plasma flow emerging from the cap through soft particle precipitation in the auroral oval. Two substorms occurred at times when the radar was south of the auroral oval. Both caused enhanced convection speeds, a swing to equatorward flow, enhanced E-region densities and a depleted F-region. The first was seen as a Westward Travelling Surge, and the swing to purely southward flow which followed the surge front did not return to westward flows until 80–110 min later. The Harang discontinuity was observed co-rotating eastwards between the substorms, 65 ± 30 min before the separatrix between the dawn and dusk convection cells.