66 resultados para relative humidity

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key climate feedbacks due to water vapor and clouds rest largely on how relative humidity R changes in a warmer climate, yet this has not been extensively analyzed in models. General circulation models (GCMs) from the CMIP3 archive and several higher resolution atmospheric GCMs examined here generally predict a characteristic pattern of R trend with global temperature that has been reported previously in individual models, including increase around the tropopause, decrease in the tropical upper troposphere, and decrease in midlatitudes. This pattern is very similar to that previously reported for cloud cover in the same GCMs, confirming the role of R in controlling changes in simulated cloud. Comparing different models, the trend in each part of the troposphere is approximately proportional to the upward and/or poleward gradient of R in the present climate. While this suggests that the changes simply reflect a shift of the R pattern upward with the tropopause and poleward with the zonal jets, the drying trend in the subtropics is roughly three times too large to be attributable to shifts of subtropical features, and the subtropical R minima deepen in most models. R trends are correlated with horizontal model resolution, especially outside the tropics, where they show signs of convergence and latitudinal gradients become close to available observations for GCM resolutions near T85 and higher. We argue that much of the systematic change in R can be explained by the local specific humidity having been set (by condensation) in remote regions with different temperature changes, hence the gradients and trends each depend on a model’s ability to resolve moisture transport. Finally, subtropical drying trends predicted from the warming alone fall well short of those observed in recent decades. While this discrepancy supports previous reports of GCMs underestimating Hadley Cell expansion, our results imply that shifts alone are not a sufficient interpretation of changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simulation of the earth's clear-sky long-wave radiation budget is used to examine the dependence of clear-sky outgoing long-wave radiation (OLR) on surface temperature and relative humidity. the simulation uses the European Centre for Medium-Range Weather Forecasts global reanalysed fields to calculate clear-sky OLR over the period from January 1979 to December 1993, thus allowing the seasonal and interannual time-scales to be resolved. the clear-sky OLR is shown to be primarily dependent on temperature changes at high latitudes and on changes in relative humidity at lower latitudes. Regions exhibiting a ‘super-greenhouse’ effect are identified and are explained by considering the changes in the convective regime associated with the Hadley circulation over the seasonal cycle, and with the Walker circulation over the interannual time-scale. the sensitivity of clear-sky OLR to changes in relative humidity diminishes with increasing relative humidity. This is explained by the increasing saturation of the water-vapour absorption bands with increased moisture. By allowing the relative humidity to vary in specified vertical slabs of the troposphere over an interannual time-scale it is shown that changes in humidity in the mid troposphere (400 to 700 hPa) are of most importance in explaining clear-sky OLR variations. Relative humidity variations do not appear to affect the positive thermodynamic water-vapour feedback significantly in response to surface temperature changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil-based formulated conidia sprayed on steel plates and conidia powder (control) of Beauveria bassiana isolate IMI 386243 were stored at temperatures from 10 to 40 degrees C in desiccators over saturated salt solutions providing relative humidities from 32 to 88%, or in hermetic storage at 40 degrees C, and moisture contents in equilibrium with 33 or 77% relative humidity. The negative semi-logarithmic relation (P < 0.005) between conidia longevity (at 40 degrees C) and equilibrium relative humidity did not differ (P > 0.25) between formulated conidia and conidia powder. Despite this, certain saturated salts provided consistently greater longevity (NaCl) and others consistently shorter longevity (KCl) for formulated conidia compared to conidia powder. These results, analysis of previous data, and comparison with hermetic storage, indicate that storage of conidia over saturated salt solutions provides inconsistent responses to environment and so may be problematic for bio-pesticide research. In hermetic storage, oil formulation was not deleterious to longevity and in the more moist environment enhanced survival periods. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Relative humidity (RH) measurements, as derived from wet-bulb and dry-bulb thermometers operated as a psychrometer within a thermometer screen, have limited accuracy because of natural ventilation variations. Standard RH calculations generally assume a fixed screen psychrometer coefficient, but this is too small during poor ventilation. By comparing a reference humidity probe—exposed within a screen containing a psychrometer—with wind-speed measurements under controlled conditions, a wind-speed correction for the screen psychrometer coefficient has been derived and applicable when 2-metre wind speeds fall below 3 ms–1. Applying this to hourly-averaged data reduced the mean moist RH bias of the psychrometer (over the reference probe) from 1.2% to 0.4%, and reduced the inter-quartile range of the RH differences from 2.0% to 0.8%. This correction is particularly amenable to automatic measurement systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several global quantities are computed from the ERA40 reanalysis for the period 1958-2001 and explored for trends. These are discussed in the context of changes to the global observing system. Temperature, integrated water vapor (IWV), and kinetic energy are considered. The ERA40 global mean temperature in the lower troposphere has a trend of +0.11 K per decade over the period of 1979-2001, which is slightly higher than the MSU measurements, but within the estimated error limit. For the period 1958 2001 the warming trend is 0.14 K per decade but this is likely to be an artifact of changes in the observing system. When this is corrected for, the warming trend is reduced to 0.10 K per decade. The global trend in IWV for the period 1979-2001 is +0.36 mm per decade. This is about twice as high as the trend determined from the Clausius-Clapeyron relation assuming conservation of relative humidity. It is also larger than results from free climate model integrations driven by the same observed sea surface temperature as used in ERA40. It is suggested that the large trend in IWV does not represent a genuine climate trend but an artifact caused by changes in the global observing system such as the use of SSM/I and more satellite soundings in later years. Recent results are in good agreement with GPS measurements. The IWV trend for the period 1958-2001 is still higher but reduced to +0.16 mm per decade when corrected for changes in the observing systems. Total kinetic energy shows an increasing global trend. Results from data assimilation experiments strongly suggest that this trend is also incorrect and mainly caused by the huge changes in the global observing system in 1979. When this is corrected for, no significant change in global kinetic energy from 1958 onward can be found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaporation (sublimation) of ice particles beneath frontal ice cloud can provide a significant source of diabatic cooling which can lead to enhanced slantwise descent below the frontal surface. The strength and vertical extent of the cooling play a role in determining the dynamic response of the atmosphere, and an adequate representation is required in numerical weather-prediction (NWP) models for accurate forecasts of frontal dynamics. In this paper, data from a vertically pointing 94 GHz radar are used to determine the characteristic depth-scale of ice particle sublimation beneath frontal ice cloud. A statistical comparison is made with equivalent data extracted from the NWP mesoscale model operational at the Met Office, defining the evaporation depth-scale as the distance for the ice water content to fall to 10% of its peak value in the cloud. The results show that the depth of the ice evaporation zone derived from observations is less than 1 km for 90% of the time. The model significantly overestimates the sublimation depth-scales by a factor of between two and three, and underestimates the local ice water content by a factor of between two and four. Consequently the results suggest the model significantly underestimates the strength of the evaporative cooling, with implications for the prediction of frontal dynamics. A number of reasons for the model discrepancy are suggested. A comparison with radiosonde relative humidity data suggests part of the overestimation in evaporation depth may be due to a high RH bias in the dry slot beneath the frontal cloud, but other possible reasons include poor vertical resolution and deficiencies in the evaporation rate or ice particle fall-speed parametrizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor belt, cold conveyor belt, and dry intrusion—have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker along-isentrope flow behind the composite cyclone. HiGEM’s ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Objective: Dispensing medicines into compliance aids is a common practice in pharmacy contrary to manufacturers’ advice and studies have shown the appearance of light-sensitive tablets is compromised by such storage; we previously found evidence of reduced bioavailability at elevated temperature and humidity. Our objective was to examine the physicochemical stability of two generic atenolol tablets in different compliance aids and with aspirin co-storage at room temperature and at 40 °C/75% relative humidity. Methods: The physicochemical stability of atenolol tablets was evaluated after 28 days of storage and compared with controls by examining visual appearance, weight, disintegration, dissolution, friability and hardness to accepted standards and using a previously validated HPLC method for chemical assay. Results and Discussion: The response to storage was brand-dependent and not straightforward. With one make of atenolol (Alpharma), storage in compliance aids even at room temperature impacted on physical stability, reducing tablet hardness, with storage in Dosett® exerting a greater impact than storage in Medidos® (t-test P < 0·001). Co-storage at elevated temperature and humidity also impacted on the appearance of non-coated aspirin tablets (Angette™). The chemical stability of atenolol was not affected and we did not find evidence of changes to bioavailability with either make. Certainly data for one atenolol make (CP Pharmaceuticals) co-stored with aspirin (Angette™ and Nu-Seals) in both compliance aids at room temperature provided evidence of short-term stability. But medicines are dispensed into compliance aids in multi-factorial ways so our study highlights not only the lack of evidence but also a realization that evidence to support real practice may not be accomplished through research. Conclusion: Reassuring practitioners of the continued stability of medicines in compliance aids under the countless condition in which they are dispensed in practice may requires a different approach involving medical device regulators and more definitive professional guidance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study objectives: There is a possibility that lower air, moisture and light protection could impact on physico-chemical stability of medicines inside multi-compartment compliance aids (MCCAs), although this has not yet been proved. The objectives of the study were to examine the physico-chemical stability of atenolol tablets stored in a compliance aid at room temperature, and at elevated temperature and humidity to simulate practice conditions. Methods: Atenolol 100 mg tablets in 28-chamber, plastic compliance aids with transparent lids were stored for four weeks at room temperature and at 40°C with 75% relative humidity. Tablets were also stored at room temperature in original packaging and Petri dishes. Physical tests were conducted to standards as laid down in the British Pharmacopoeia 2005, and dissolution to those of the United States Pharmacopoeia volume 24. Chemical stability was assessed by a validated high-performance liquid chromatography (HPLC) method. Results: Tablets at room temperature in original packaging, in compliance aids and Petri dishes remained the same in appearance and passed physico-chemical tests. Tablets exposed to 40°C with 75% relative humidity in compliance aids passed tests for uniformity of weight, friability and chemical stability but became pale and moist, softer (82 newtons ± 4; p< 0.0001) than tablets in the original packaging (118 newtons ± 6), more friable (0.14% loss of mass) compared with other tablets (0.005%), and failed the tests for disintegration (>15 minutes) and dissolution (only 15% atenolol released at 30 minutes). Conclusion: Although chemical stability was unaffected, storage in compliance aids at 40°C with 75% relative humidity softened atenolol tablets, prolonged disintegration time and hindered dissolution which could significantly reduce bioavailability. This formulation could be suitable for storage in compliance aids at 25°C, but not in hotter, humid weather.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.