17 resultados para regional areas
em CentAUR: Central Archive University of Reading - UK
Resumo:
The benefits of sector and regional diversification have been well documented in the literature but have not previously been investigated in Italy. In addition, previous studies have used geographically defined regions, rather than economically functional areas, when performing the analysis even though most would argue that it is the economic structure of the area that will lead to differences in demand and hence property performance. This study therefore uses economically defined regions of Italy to test the relative benefits of regional diversification versus sector diversification within the Italian real estate portfolio. To examine this issue we use constrained cross-section regressions the on the sector and regional affiliation of 14 cities in Italy to extract the “pure” return effects of the different factors using annual data over the period 1989 to 2003. In contrast, to previous studies we find that regional factors effects in Italy have a much greater influence on property returns than sector-specific effects, which is probably a direct result of using the extremely diverse economic regions of Italy rather than arbitrary geographically locations. Be that as it may, the results strongly suggest that that diversification across the regions of Italy used here is likely to offer larger risk reduction benefits than a sector diversification strategy within a region. In other words, fund managers in Italy must monitor the regional composition of their portfolios more closely than its sector allocation. Additionally, the results supports that contemporary position that ‘regional areas’ based on economic function, provide greater diversification benefits rather than areas defined by geographical location.
Resumo:
The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper examines changes in the surface area of glaciers in the North and South Chuya Ridges, Altai Mountains in 1952-2004 and their links with regional climatic variations. The glacier surface areas for 2004 were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Data from the World Glacier Inventory (WGI)dating to 1952 and aerial photographs from 1952 were used to estimate the changes. 256 glaciers with a combined area of 253±5.1 km2 have been identified in the region in 2004. Estimation of changes in extent of 126 glaciers with the individual areas not less than 0.5 km2 in 1952 revealed a 19.7±5.8% reduction. The observed glacier retreat is primarily driven by an increase in summer temperatures since the 1980s when air temperatures were increasing at a rate of 0.10 - 0.13oC a-1 at the glacier tongue elevation. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in the Altai in 2071-2100 by 6-7oC and 3-5oC respectively in comparison with 1961-1990 while annual precipitation will increase by 15% and 5%. The length of the ablation season will extend from June-August to the late April – early October. The projected increases in precipitation will not compensate for the projected warming and glaciers will continue to retreat in the 21st century under both B2 and A2 scenarios.
Resumo:
Species rich semi-natural grasslands are an important but threatened habitat throughout Europe and much of the former area has been lost since the 1950s. However, in some countries large areas have been preserved and the demand for meadow recreation by sowing seed mixtures is increasing. In the White Carpathians Protected Landscape Area (Czech Republic) the use of commercial seed mixtures is undesirable and the use of regional mixtures has been investigated. The costs for seeding large areas are high and lower cost techniques are needed. In 1999 a field experiment was set up to investigate the establishment of hay meadow vegetation comparing sowing a regional mixture all over a plot with sowing narrow 2.5 In strips of regional seed mixtures into a matrix of a commercial grass mixture or into natural regeneration. The results after five seasons showed good establishment of the sown species in the meadow treatment. Spread of sown species from the sown strips into the surrounding matrix occurred but the cover of species was lower in the commercial grass matrix compared with the natural regeneration matrix. Colonisation of some plots by unsown desirable grassland species from adjacent grassland habitats also occurred, but more species colonised the natural regeneration matrix than the commercial grasses or the sown meadow matrix itself. Overall, the results indicate that, in appropriate situations, sown strips can provide a lower cost but slower and longer-term alternative to field scale sowing of regional seed mixtures for recreation of hay meadow vegetation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Palaeoproxy records alone are seldom sufficient to provide a full assessment of regional palaeoclimates. To better understand the possible changes in the Mediterranean climate during the Holocene, a series of palaeoclimate integrations for periods spanning the last 12 000 years have been performed and their results diagnosed. These simulations use the HadSM3 global climate model, which is then dynamically downscaled to approximately 50 km using a consistent regional climate model (HadRM3). Changes in the model’s seasonal-mean surface air temperatures and precipitation are discussed at both global and regional scales, along with the physical mechanisms underlying the changes. It is shown that the global model reproduces many of the large-scale features of the mid-Holocene climate (consistent with previous studies) and that the results suggest that many areas within the Mediterranean region were wetter during winter with a stronger seasonal cycle of surface air temperatures during the early Holocene. This precipitation signal in the regional model is strongest in the in the northeast Mediterranean (near Turkey), consistent with low-level wind patterns and earlier palaeosyntheses. It is, however, suggested that further work is required to fully understand the changes in the winter circulation patterns over the Mediterranean region.
Resumo:
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
Droughts tend to evolve slowly and affect large areas simultaneously, which suggests that improved understanding of spatial coherence of drought would enable better mitigation of drought impacts through enhanced monitoring and forecasting strategies. This study employs an up-to-date dataset of over 500 river flow time series from 11 European countries, along with a gridded precipitation dataset, to examine the spatial coherence of drought in Europe using regional indicators of precipitation and streamflow deficit. The drought indicators were generated for 24 homogeneous regions and, for selected regions, historical drought characteristics were corroborated with previous work. The spatial coherence of drought characteristics was then examined at a European scale. Historical droughts generally have distinctive signatures in their spatio-temporal development, so there was limited scope for using the evolution of historical events to inform forecasting. Rather, relationships were explored in time series of drought indicators between regions. Correlations were generally low, but multivariate analyses revealed broad continental-scale patterns, which appear to be related to large-scale atmospheric circulation indices (in particular, the North Atlantic Oscillation and the East Atlantic West Russia pattern). A novel methodology for forecasting was developed (and demonstrated with reference to the United Kingdom), which predicts drought from drought i.e. uses spatial coherence of drought to facilitate early warning of drought in a target region, from drought which is developing elsewhere in Europe.Whilst the skill of the methodology is relatively modest at present, this approach presents a potential new avenue for forecasting, which offers significant advantages in that it allows prediction for all seasons, and also shows some potential for forecasting the termination of drought conditions.
Resumo:
This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.
Resumo:
The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change [1] has stimulated the search for planetary-scale technological solutions for reducing global warming [2] (“geoengineering”), typically characterized by the necessity for costly new infrastructures and industries [3]. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget 4 and 5 because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation [6]. Specifically, we propose a “bio-geoengineering” approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1°C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO2[7]. Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.
Resumo:
The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a trans-disciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analysing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward towards the inclusion of the cultural dimension in European wide assessments can be made.
Resumo:
Based on the geological evidence that the northern Tibetan Plateau (NTP) had an uplift of a finite magnitude since the Miocene and the major Asian inland deserts formed in the early Pliocene, a regional climate model (RegCM4.1) with a horizontal resolution of 50 km was used to explore the effects of the NTP uplift and the related aridification of inland Asia on regional climate. We designed three numerical experiments including the control experiment representing the present-day condition, the high-mountain experiment representing the early Pliocene condition with uplifted NTP but absence of the Asian inland deserts, and the low-mountain experiment representing the mid-Miocene condition with reduced topography in the NTP (by as much as 2400 m) and also absence of the deserts. Our simulation results indicated that the NTP uplift caused significant reductions in annual precipitation in a broad region of inland Asia north of the Tibetan Plateau (TP) mainly due to the enhanced rain shadow effect of the mountains and changes in the regional circulations. However, four mountainous regions located in the uplift showed significant increases in precipitation, stretching from the Pamir Plateau in the west to the Qilian Mountains in the east. These mountainous areas also experienced different changes in the rainfall seasonality with the greatest increases occurring during the respective rainy seasons, predominantly resulted from the enhanced orographically forced upwind ascents. The appearance of the major deserts in the inland Asia further reduced precipitation in the region and led to increased dust emission and deposition fluxes, while the spatial patterns of dust deposition were also changed, not only in the regions of uplift-impacted topography, but also in the downwind regions. One major contribution from this study is the comparison of the simulation results with 11 existing geological records representing the moisture conditions from Miocene to Pliocene. The comparisons revealed good matches between the simulation results and the published geological records. Therefore, we conclude that the NTP uplift and the related formation of the major deserts played a controlling role in the evolution of regional climatic conditions in a broad region in inland Asia since the Miocene.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.