44 resultados para recursive formulation
em CentAUR: Central Archive University of Reading - UK
Resumo:
We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, where asset value and population density are greatest, the model spatial resolution required to represent flows through a typical street network (i.e. < 10m) often results in impractical computational cost at the whole city scale. Explicit diffusive storage cell models become very inefficient at such high resolutions, relative to shallow water models, because the stable time step in such schemes scales as a quadratic of resolution. This paper presents the calibration and evaluation of a recently developed new formulation of the LISFLOOD-FP model, where stability is controlled by the Courant–Freidrichs–Levy condition for the shallow water equations, such that, the stable time step instead scales linearly with resolution. The case study used is based on observations during the summer 2007 floods in Tewkesbury, UK. Aerial photography is available for model evaluation on three separate days from the 24th to the 31st of July. The model covered a 3.6 km by 2 km domain and was calibrated using gauge data from high flows during the previous month. The new formulation was benchmarked against the original version of the model at 20 m and 40 m resolutions, demonstrating equally accurate performance given the available validation data but at 67x faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in a significantly more accurate simulation of the drying dynamics compared to that simulated by the coarse resolution models, although estimates of peak inundation depth were similar.
Resumo:
Live bacterial vaccines have great promise both as vaccines against enteric pathogens and as heterologous antigen vectors against diverse diseases. Ideally, room temperature stable dry formulations of live bacterial vaccines will allow oral vaccination without cold-chain storage or injections. Attenuated Salmonella can cross the intestinal wall and deliver replicating antigen plus innate immune activation signals directly to the intestinal immune tissues, however the ingested bacteria must survive firstly gastric acid and secondly the antimicrobial defences of the small intestine. We found that the way in which cells are grown prior to formulation markedly affects sensitivity to acid and bile. Using a previously published stable storage formulation that maintained over 10% viability after 56 days storage at room temperature, we found dried samples of an attenuated S. typhimurium vaccine lost acid and bile resistance compared to the same bacteria taken from fresh culture. The stable formulation utilised osmotic preconditioning in defined medium plus elevated salt concentration to induce intracellular trehalose accumulation before drying. Dried bacteria grown in rich media without osmotic preconditioning showed more resistance to bile, but less stability during storage, suggesting a trade-off between bile resistance and stability. Further optimization is needed to produce the ultimate room-temperature stable oral live bacterial vaccine formulation.
Resumo:
Different formulations of Bacillus subtilis were prepared using standard laboratory protocols. Bacillus subtilis survived in glucose and talc powders at 8.6 and 7.8 log(10) CFU/g, respectively, for 1 year of storage at room temperature compared with 3.5 log(10) CFU/g on a peat formulation. Glasshouse experiments using soil and seed treatments were conducted to test the efficacy of B. subtilis for protecting lentil against the wilt disease caused by Fusariumoxysporum f. sp. lentis. Seed treatments with formulations of B. subtilis on glucose, talc and peat significantly enhanced its biocontrol activity against Fusarium compared with a treatment in which spores were applied directly to seed. The formulations decreased disease severity by reducing colonization of plants by the pathogen, promoting their growth and increased the dry weight of lentil plants. Of these treatments the glucose and talc-based powder formulations were more effective than the peat formulation and the spore application without a carrier. It was shown that the B. subtilis spores applied with glucose were viable for longer than those applied with other carriers. Seed treatment with these formulated spores is an effective delivery system that can provide a conducive environment for B. subtilis to suppress vascular wilt disease on lentil and has the potential for utilization in commercial field application.
Resumo:
In this paper, we Study the invariant intervals, the globally attractivity of the two equilibrium points, and the oscillatory behavior of tile solutions of the difference equation x(n =) ax(n-1) - bx(n-2)/c + x(n-2), n = 1,2,......, where a, b. c > 0. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The recursive circulant RC(2(n), 4) enjoys several attractive topological properties. Let max_epsilon(G) (m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. In this paper, we show that max_epsilon(RC(2n,4))(m) = Sigma(i)(r)=(0)(p(i)/2 + i)2(Pi), where p(0) > p(1) > ... > p(r) are nonnegative integers defined by m = Sigma(i)(r)=(0)2(Pi). We then apply this formula to find the bisection width of RC(2(n), 4). The conclusion shows that, as n-dimensional cube, RC(2(n), 4) enjoys a linear bisection width. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we study the global stability of the difference equation x(n) = a + bx(n-1) + cx(n-1)(2)/d - x(n-2), n = 1,2,....., where a, b greater than or equal to 0 and c, d > 0. We show that one nonnegative equilibrium point of the equation is a global attractor with a basin that is determined by the parameters, and every positive Solution of the equation in the basin exponentially converges to the attractor. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this Paper, we study the invariant intervals, the global attractivity of the equilibrium points, and the asymptotic behavior of the solutions of the difference equation x(n) = ax(n-1) + bx(n-2) / c + dx(n-1)x(n-2), n =1, 2, ..., where a greater than or equal to 0, b, c, d > 0. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A weak formulation of Roe's approximate Riemann solver is applied to the equations of ‘barotropic’ flow, including the shallow water equations, and it is shown that this leads to an approximate Riemann solver recently presented for such flows.