10 resultados para recharge

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water table response to rainfall was investigated at six sites in the Upper, Middle and Lower Chalk of southern England. Daily time series of rainfall and borehole water level were cross-corretated to investigate seasonal variations in groundwater-level response times, based on periods of 3-month duration. The time tags (in days) yielding significant correlations were compared with the average unsaturated zone thickness during each 3-month period. In general, for cases when the unsaturated zone was greater than 18 m thick, the time tag for a significant water-level response increased rapidly once the depth to the water table exceeded a critical value, which varied from site to site. For shallower water tables, a linear relationship between the depth to the water table and the water-level response time was evident. The observed variations in response time can only be partially accounted for using a diffusive model for propagation through the unsaturated matrix, suggesting that some fissure flow was occurring. The majority of rapid responses were observed during the winter/spring recharge period, when the unsaturated zone is thinnest and the unsaturated zone moisture content is highest, and were more likely to occur when the rainfall intensity exceeded 5 mm/day. At some sites, a very rapid response within 24 h of rainfall was observed in addition to the longer term responses even when the unsaturated zone was up to 64 m thick. This response was generally associated with the autumn period. The results of the cross-correlation analysis provide statistical support for the presence of fissure flow and for the contribution of multiple pathways through the unsaturated zone to groundwater recharge. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disequilibria between Pb-210 and Ra-226 can be used to trace magma degassing, because the intermediate nuclides, particularly Rn-222, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for (Pb-210/Ra-226). Both excesses and deficits of Pb-210 are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by Pb-210 deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up Pb-210 excess is much shorter (months) as can be observed from steady increases of (Pb-210/Ra-226) with time during 1980-1982. The formation of Pb-210 excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of (Pb-210/Ra-226) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both Pb-210 deficits and Pb-210 excesses, cannot be reconciled in a single event. Rather Pb-210 deficits are associated with pre-eruptive diffuse degassing, while Pb-210 excesses document the more vigorous degassing associated with eruption and recharge of the system. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal and spatial patterns of soil water content affect many soil processes including evaporation, infiltration, ground water recharge, erosion and vegetation distribution. This paper describes the analysis of a soil moisture dataset comprising a combination of continuous time series of measurements at a few depths and locations, and occasional roving measurements at a large number of depths and locations. The objectives of the paper are: (i) to develop a technique for combining continuous measurements of soil water contents at a limited number of depths within a soil profile with occasional measurements at a large number of depths, to enable accurate estimation of the soil moisture vertical pattern and the integrated profile water content; and (ii) to estimate time series of soil moisture content at locations where there are just occasional soil water measurements available and some continuous records from nearby locations. The vertical interpolation technique presented here can strongly reduce errors in the estimation of profile soil water and its changes with time. On the other hand, the temporal interpolation technique is tested for different sampling strategies in space and time, and the errors generated in each case are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice–ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987–1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997–2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review investigates the performance of photovoltaic and solar-assisted ground-source heat pumps in which solar heat is transferred to the ground to improve the coefficient of performance. A number of studies indicate that, for systems with adequately sized ground heat exchangers, the effect on system efficiency is small: about 1% improvement if the heat source is photovoltaic, a 1–2% decline if the source is solar thermal. With possible exceptions for systems in which the ground heat exchanger is undersized, or natural recharge from ground water is insufficient, solar thermal energy is better used for domestic hot water than to recharge ground heat. This appears particularly true outside the heating season, as although much of the heat extracted from the ground can be replaced, it seems to have little effect on the coefficient of performance. Any savings in electrical consumption that do result from an improved coefficient can easily be outweighed by an inefficient control system for the circulation pumps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less dry than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, wet runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.