54 resultados para real life data
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cognitive phenomenology starts from something that has been obscured in much recent analytic philosophy: the fact that lived conscious experience isn’t just a matter of sensation or feeling, but is also cognitive in character, through and through. This is obviously true of ordinary human perceptual experience, and cognitive phenomenology is also concerned with something more exclusively cognitive, which we may call propositional meaning-experience, e.g. occurrent experience of linguistic representations as meaning something, as this occurs in thinking or reading or hearing others speak.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
We are developing computational tools supporting the detailed analysis of the dependence of neural electrophysiological response on dendritic morphology. We approach this problem by combining simulations of faithful models of neurons (experimental real life morphological data with known models of channel kinetics) with algorithmic extraction of morphological and physiological parameters and statistical analysis. In this paper, we present the novel method for an automatic recognition of spike trains in voltage traces, which eliminates the need for human intervention. This enables classification of waveforms with consistent criteria across all the analyzed traces and so it amounts to reduction of the noise in the data. This method allows for an automatic extraction of relevant physiological parameters necessary for further statistical analysis. In order to illustrate the usefulness of this procedure to analyze voltage traces, we characterized the influence of the somatic current injection level on several electrophysiological parameters in a set of modeled neurons. This application suggests that such an algorithmic processing of physiological data extracts parameters in a suitable form for further investigation of structure-activity relationship in single neurons.
Resumo:
This paper analyses the appraisal of a specialized form of real estate - data centres - that has a unique blend of locational, physical and technological characteristics that differentiate it from conventional real estate assets. Market immaturity, limited trading and a lack of pricing signals enhance levels of appraisal uncertainty and disagreement relative to conventional real estate assets. Given the problems of applying standard discounted cash flow, an approach to appraisal is proposed that uses pricing signals from traded cash flows that are similar to the cash flows generated from data centres. Based upon ‘the law of one price’, it is assumed that two assets that are expected to generate identical cash flows in the future must have the same value now. It is suggested that the expected cash flow of assets should be analysed over the life cycle of the building. Corporate bond yields are used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds.
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.
Resumo:
Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.
Resumo:
This paper re-examines whether it is more advantageous in terms of risk reduction to diversify by sector or region by comparing the performance of the ‘conventional’ regional classification of the UK with one based on modern socio-economic criteria using a much larger real estate data set than any previous study and the MAD portfolio approach. The general conclusion of this analysis is that property market sectors still dominate regions, however defined and so should be the first level of analysis when developing a portfolio diversification strategy. This is in line with previous research. When the performance of Functional groups is compared with the ‘conventional’ administrative regions the results here show that, when functionally based, groupings can in some cases provide greater risk reduction. In addition the underlying characteristics of these functional groups may be much more insightful and acceptable to real estate portfolio managers in considering the assets that a portfolio might contain.
Resumo:
The position of Real Estate within a multi-asset portfolio has received considerable attention recently. Previous research has concentrated on the percentage holding property would achieve given its risk/return characteristics. Such studies have invariably used Modern Portfolio Theory and these approaches have been criticised for both the quality of the real estate data and problems with the methodology itself. The first problem is now well understood, and the second can be addressed by the use of realistic constraints on asset holdings. This paper takes a different approach. We determine the level of return that Real Estate needs to achieve to justify an allocation within the multi asset portfolio. In order to test the importance of the quality of the data we use historic appraisal based and desmoothed returns to examine the sensitivity of the results. Consideration is also given to the Holding period and the imposition of realistic constraints on the asset holdings in order to model portfolios held by pension fund investors. We conclude, using several benchmark levels of portfolio risk and return, that using appraisal based data the required level of return for Real Estate was less than that achieved over the period 1972-1993. The use of desmoothed series can reverse this result at the highest levels of desmoothing although within a restricted holding period Real Estate offered returns in excess of those required to enter the portfolio and might have a role to play in the multi-asset portfolio.
Resumo:
We explore the influence of the choice of attenuation factor on Katz centrality indices for evolving communication networks. For given snapshots of a network observed over a period of time, recently developed communicability indices aim to identify best broadcasters and listeners in the network. In this article, we looked into the sensitivity of communicability indices on the attenuation factor constraint, in relation to spectral radius (the largest eigenvalue) of the network at any point in time and its computation in the case of large networks. We proposed relaxed communicability measures where the spectral radius bound on attenuation factor is relaxed and the adjacency matrix is normalised in order to maintain the convergence of the measure. Using a vitality based measure of both standard and relaxed communicability indices we looked at the ways of establishing the most important individuals for broadcasting and receiving of messages related to community bridging roles. We illustrated our findings with two examples of real-life networks, MIT reality mining data set of daily communications between 106 individuals during one year and UK Twitter mentions network, direct messages on Twitter between 12.4k individuals during one week.
Resumo:
In Britain, substantial cuts in police budgets alongside controversial handling of incidents such as politically sensitive enquiries, public disorder and relations with the media have recently triggered much debate about public knowledge and trust in the police. To date, however, little academic research has investigated how knowledge of police performance impacts citizens’ trust. We address this long-standing lacuna by exploring citizens’ trust before and after exposure to real performance data in the context of a British police force. The results reveal that being informed of performance data affects citizens’ trust significantly. Furthermore, direction and degree of change in trust are related to variations across the different elements of the reported performance criteria. Interestingly, the volatility of citizens’ trust is related to initial performance perceptions (such that citizens with low initial perceptions of police performance react more significantly to evidence of both good and bad performance than citizens with high initial perceptions), and citizens’ intentions to support the police do not always correlate with their cognitive and affective trust towards the police. In discussing our findings, we explore the implications of how being transparent with performance data can both hinder and be helpful in developing citizens’ trust towards a public organisation such as the police. From our study, we pose a number of ethical challenges that practitioners face when deciding what data to highlight, to whom, and for what purpose.
Resumo:
This paper introduces a novel approach for free-text keystroke dynamics authentication which incorporates the use of the keyboard’s key-layout. The method extracts timing features from specific key-pairs. The Euclidean distance is then utilized to find the level of similarity between a user’s profile data and his/her test data. The results obtained from this method are reasonable for free-text authentication while maintaining the maximum level of user relaxation. Moreover, it has been proven in this study that flight time yields better authentication results when compared with dwell time. In particular, the results were obtained with only one training sample for the purpose of practicality and ease of real life application.
Resumo:
In this article, we investigate how the choice of the attenuation factor in an extended version of Katz centrality influences the centrality of the nodes in evolving communication networks. For given snapshots of a network, observed over a period of time, recently developed communicability indices aim to identify the best broadcasters and listeners (receivers) in the network. Here we explore the attenuation factor constraint, in relation to the spectral radius (the largest eigenvalue) of the network at any point in time and its computation in the case of large networks. We compare three different communicability measures: standard, exponential, and relaxed (where the spectral radius bound on the attenuation factor is relaxed and the adjacency matrix is normalised, in order to maintain the convergence of the measure). Furthermore, using a vitality-based measure of both standard and relaxed communicability indices, we look at the ways of establishing the most important individuals for broadcasting and receiving of messages related to community bridging roles. We compare those measures with the scores produced by an iterative version of the PageRank algorithm and illustrate our findings with two examples of real-life evolving networks: the MIT reality mining data set, consisting of daily communications between 106 individuals over the period of one year, a UK Twitter mentions network, constructed from the direct \emph{tweets} between 12.4k individuals during one week, and a subset the Enron email data set.