14 resultados para rank order spectra
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca2+ or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [S-35]GTP gamma S binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca2+ after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Previous studies have compared the oestrogenic properties of phytoestrogens in a wide variety of disparate assays. Since not all phytoestrogens have been tested in each assay, this makes inter-study comparisons and ranking oestrogenic potency difficult. In this report, we have compared the oestrogen agonist and antagonist activity of eight phytoestrogens (genistein, daidzein, equol, miroestrol, deoxymiroestrol, 8-prenylnaringenin, coumestrol and resveratrol) in a range of assays all based within the same receptor and cellular context of the MCF7 human breast cancer cell line. The relative binding of each phytoestrogen to oestrogen receptor (ER) of MCF7 cytosol was calculated from the molar excess needed for 50 % inhibition of [H-3]oestradiol binding (IC50), and was in the order coumestrol (35x)/8-prenylnaringenin (45 x)/deoxymiroestrol (50 x) > miroestrol (260x) > genistein (1000x) > equol (4000x) > daidzein (not achieved: 40 % inhibition at 10(4)-fold molar excess) > resveratrol (not achieved: 10 % inhibition at 10(5)-fold molar excess). For cell-based assays, the rank order of potency (estimated in terms of the concentration needed to achieve a response equivalent to 50 % of that found with 17 beta-oestradiol (IC50)) remained very similar for all the assays whether measuring ligand ability to induce a stably transfected oestrogen-responsive ERE-CAT reporter gene, cell growth in terms of proliferation rate after 7 days or cell growth in terms of saturation density after 14 days. The IC50 values for these three assays in order were for 17 beta-oestradiol (1 x 10-(11) M, 1 x 10-(11) M, 2 x 10(-11) M), and in rank order of potency for the phytoestrogens, deoxymiroestrol (1 x 10(-10) M, 3 x 10(-11) M, 2 x 10(-11) M) > miroestrol (3 x 10(-10) M, 2 x 10(-11) M, 8 x 10(-11) M) > 8-prenylnaringenin (1 x 10(-9) M, 3 x 10(-10) M, 3 x 10(-10) M) > cournestrol (3 x 10(-8) M, 2 x 10(-8) M, 3 x 10(-8) M) > genistein (4 x 10(-8) M, 2 x 10(-8) M, 1 x 10(-8) M)/equol (1 x 10(-7) M, 3 x 10(-8) M, 2 x 10(-8) M) > daidzein (3 x 10(-7) M, 2 x 10(-7) M, 4 x 10(-8) M) > resveratrol (4 x 10(-6) M, not achieved, not achieved). Despite using the same receptor context of the MCF7 cells, this rank order differed from that determined from receptor binding. The most marked difference was for cournestrol and 8-prenylnaringenin which both displayed a relatively potent ability to displace [3H]oestradiol from cytosolic ER compared with their much lower activity in the cell-based assays. Albeit at varying concentrations, seven of the eight phytoestrogens (all except resveratrol) gave similar maximal responses to that given by 17 beta-oestradiol in cell-based assays which makes them full oestrogen agonists. We found no evidence for any oestrogen antagonist action of any of these phytoestrogens at concentrations of up to 10(-6) M on either reporter gene induction or on stimulation of cell growth. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca(2+) or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [(35)S]GTPgammaS binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca(2+) after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor.
Resumo:
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.
Acute effects of meal fatty acid composition on insulin sensitivity in healthy post-menopausal women
Resumo:
Postprandial plasma insulin concentrations after a single high-fat meal may be modified by the presence of specific fatty acids although the effects of sequential meal ingestion are unknown. The aim of the present study was to examine the effects of altering the fatty acid composition in a single mixed fat-carbohydrate meal on glucose metabolism and insulin sensitivity of a second meal eaten 5 h later. Insulin sensitivity was assessed using a minimal model approach. Ten healthy post-menopausal women underwent four two-meal studies in random order. A high-fat breakfast (40 g fat) where the fatty acid composition was predominantly saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), long-chain n-3 PUFA or monounsaturated fatty acids (MUFA) was followed 5 h later by a low-fat, high-carbohydrate lunch (5.7 g fat), which was identical in all four studies. The plasma insulin response was significantly higher following the SFA meal than the other meals after both breakfast and lunch (P<0.006) although there was no effect of breakfast fatty acid composition on plasma glucose concentrations. Postprandial insulin sensitivity (SI(Oral)) was assessed for 180 min after each meal. SI(Oral) was significantly lower after lunch than after breakfast for all four test meals (P=0.019) following the same rank order (SFA < n-6 PUFA < n-3 PUFA < MUFA) for each meal. The present study demonstrates that a single meal rich in SFA reduces postprandial insulin sensitivity with 'carry-over' effects for the next meal.
Resumo:
Reliable techniques for screening large numbers of plants for root traits are still being developed, but include aeroponic, hydroponic and agar plate systems. Coupled with digital cameras and image analysis software, these systems permit the rapid measurement of root numbers, length and diameter in moderate ( typically <1000) numbers of plants. Usually such systems are employed with relatively small seedlings, and information is recorded in 2D. Recent developments in X-ray microtomography have facilitated 3D non-invasive measurement of small root systems grown in solid media, allowing angular distributions to be obtained in addition to numbers and length. However, because of the time taken to scan samples, only a small number can be screened (typically<10 per day, not including analysis time of the large spatial datasets generated) and, depending on sample size, limited resolution may mean that fine roots remain unresolved. Although agar plates allow differences between lines and genotypes to be discerned in young seedlings, the rank order may not be the same when the same materials are grown in solid media. For example, root length of dwarfing wheat ( Triticum aestivum L.) lines grown on agar plates was increased by similar to 40% relative to wild-type and semi-dwarfing lines, but in a sandy loam soil under well watered conditions it was decreased by 24-33%. Such differences in ranking suggest that significant soil environment-genotype interactions are occurring. Developments in instruments and software mean that a combination of high-throughput simple screens and more in-depth examination of root-soil interactions is becoming viable.
Resumo:
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.
Resumo:
There have been limited recent advances in understanding of what influences uptake of innovations despite the current international focus on smallholder agriculture as a means of achieving food security and rural development. This paper provides a rigorous study of factors influencing adoption by smallholders in central Mexico and builds on findings to identify a broad approach to significantly improve research on and understanding of factors influencing adoption by smallholders in developing countries. Small-scale dairy systems play an important role in providing income, employment and nutrition in the highlands of central Mexico. A wide variety of practices and technologies have been promoted by the government public services to increase milk production and economic efficiency, but there have been very low levels of uptake of most innovations, with the exception of improving grassland through introduction of grass varieties together with management practices. A detailed study was conducted with 80 farmers who are already engaged with the use of this innovation to better understand the process of adoption and identify socioeconomic and farm variables, cognitive (beliefs), and social–psychological (social norms) factors associated with farmers' use of improved grassland. The Theory of Reasoned Action (TRA) was used as a theoretical framework and Spearman Rank Order correlation was conducted to analyse the data. Most farmers (92.5%) revealed strong intention to continue to use improved grassland (which requires active management and investment of resources) for the next 12 months; whereas 7.5% of farmers were undecided and showed weak intention, which was associated with farmers whose main income was from non-farm activities as well as with farmers who had only recently started using improved grassland. Despite farmers' experience of using improved grassland (mean of 18 years) farmers' intentions to continue to adopt it was influenced almost as much by salient referents (mainly male relatives) as by their own attitudes. The hitherto unnoticed longevity of the role social referents play in adoption decisions is an important finding and has implications for further research and for the design of extension approaches. The study demonstrates the value and importance of using TRA or TPB approaches to understand social cognitive (beliefs) and social–psychological (social norms) factors in the study of adoption. However, other factors influencing adoption processes need to be included to provide fuller understanding. An approach that would enable this, and the development of more generalisable findings than from location specific case studies, and contribute to broader conceptualisation, is proposed.
Resumo:
Cardiac hypertrophy, an important adaptational response, is associated with up-regulation of the immediate early gene, c- jun, which encodes the c-Jun transcription factor. c-Jun may feed back to up-regulate its own transcription and, since the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) phosphorylate c-Jun(Ser-63/73) to increase its transactivating activity, JNKs are thought to be the principal factors involved in c- jun up-regulation. Hypertrophy in primary cultures of cardiac myocytes is induced by endothelin-1, phenylephrine or PMA, probably through activation of one or more of the MAPK family. These three agonists increased c- jun mRNA with the rank order of potency of PMA approximately endothelin-1>phenylephrine. Up-regulation of c- jun mRNA by endothelin-1 was attenuated by inhibitors of protein kinase C (GF109203X) and the extracellular signal-regulated kinase (ERK) cascade (PD98059 or U0126), but not by inhibitors of the JNK (SP600125) or p38-MAPK (SB203580) cascades. Hyperosmotic shock (0.5 M sorbitol) powerfully activates JNKs, but did not increase c- jun mRNA. These data suggest that ERKs, rather than JNKs, are required for c- jun up-regulation. However, endothelin-1 and phenylephrine induced greater up-regulation of c-Jun protein than PMA and phosphorylation of c-Jun(Ser-63/73) correlated with the level of c-Jun protein. Up-regulation of c-Jun protein by endothelin-1 was attenuated by inhibitors of protein kinase C and the ERK cascade, probably correlating with a primary input of ERKs into transcription. In addition, SP600125 inhibited the phosphorylation of c-Jun(Ser-63/73), attenuated the increase in c-Jun protein induced by endothelin-1 and increased the rate of c-Jun degradation. Thus whereas ERKs are the principal MAPKs required for c- jun transcription, JNKs are necessary to stabilize c-Jun for efficient up-regulation of the protein.
Resumo:
Gas phase vibrational spectra of BrHI- and BrDI- have been measured from 6 to 17 mum (590-1666 cm-1) using tunable infrared radiation from the free electron laser for infrared experiments in order to characterize the strong hydrogen bond in these species. BrHI-.Ar and BrDI-.Ar complexes were produced and mass selected, and the depletion of their signal due to vibrational predissociation was monitored as a function of photon energy. Additionally, BrHI- and BrDI- were dissociated into HBr (DBr) and I- via resonant infrared multiphoton dissociation. The spectra show numerous transitions, which had not been observed by previous matrix studies. New ab initio calculations of the potential-energy surface and the dipole moment are presented and are used in variational ro-vibrational calculations to assign the spectral features. These calculations highlight the importance of basis set in the simulation of heavy atoms such as iodine. Further, they demonstrate extensive mode mixing between the bend and the H-atom stretch modes in BrHI- and BrDI- due to Fermi resonances. These interactions result in major deviations from simple harmonic estimates of the vibrational energies. As a result of this new analysis, previous matrix-isolation spectra assignments are reevaluated. (C) 2004 American Institute of Physics.
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models, and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas, and performing a pseudo-monochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer pseudo-monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K d−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K d−1 can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K d−1 for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.
Resumo:
Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.