20 resultados para range uncertainty

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new dynamic model of water quality, Q(2), has recently been developed, capable of simulating large branched river systems. This paper describes the application of a generalized sensitivity analysis (GSA) to Q(2) for single reaches of the River Thames in southern England. Focusing on the simulation of dissolved oxygen (DO) (since this may be regarded as a proxy for the overall health of a river); the GSA is used to identify key parameters controlling model behavior and provide a probabilistic procedure for model calibration. It is shown that, in the River Thames at least, it is more important to obtain high quality forcing functions than to obtain improved parameter estimates once approximate values have been estimated. Furthermore, there is a need to ensure reasonable simulation of a range of water quality determinands, since a focus only on DO increases predictive uncertainty in the DO simulations. The Q(2) model has been applied here to the River Thames, but it has a broad utility for evaluating other systems in Europe and around the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical loads are the basis for policies controlling emissions of acidic substances in Europe and elsewhere. They are assessed by several elaborate and ingenious models, each of which requires many parameters, and have to be applied on a spatially-distributed basis. Often the values of the input parameters are poorly known, calling into question the validity of the calculated critical loads. This paper attempts to quantify the uncertainty in the critical loads due to this "parameter uncertainty", using examples from the UK. Models used for calculating critical loads for deposition of acidity and nitrogen in forest and heathland ecosystems were tested at four contrasting sites. Uncertainty was assessed by Monte Carlo methods. Each input parameter or variable was assigned a value, range and distribution in an objective a fashion as possible. Each model was run 5000 times at each site using parameters sampled from these input distributions. Output distributions of various critical load parameters were calculated. The results were surprising. Confidence limits of the calculated critical loads were typically considerably narrower than those of most of the input parameters. This may be due to a "compensation of errors" mechanism. The range of possible critical load values at a given site is however rather wide, and the tails of the distributions are typically long. The deposition reductions required for a high level of confidence that the critical load is not exceeded are thus likely to be large. The implication for pollutant regulation is that requiring a high probability of non-exceedance is likely to carry high costs. The relative contribution of the input variables to critical load uncertainty varied from site to site: any input variable could be important, and thus it was not possible to identify variables as likely targets for research into narrowing uncertainties. Sites where a number of good measurements of input parameters were available had lower uncertainties, so use of in situ measurement could be a valuable way of reducing critical load uncertainty at particularly valuable or disputed sites. From a restricted number of samples, uncertainties in heathland critical loads appear comparable to those of coniferous forest, and nutrient nitrogen critical loads to those of acidity. It was important to include correlations between input variables in the Monte Carlo analysis, but choice of statistical distribution type was of lesser importance. Overall, the analysis provided objective support for the continued use of critical loads in policy development. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we list some new orthogonal main effects plans for three-level designs for 4, 5 and 6 factors in IS runs and compare them with designs obtained from the existing L-18 orthogonal array. We show that these new designs have better projection properties and can provide better parameter estimates for a range of possible models. Additionally, we study designs in other smaller run-sizes when there are insufficient resources to perform an 18-run experiment. Plans for three-level designs for 4, 5 and 6 factors in 13 to 17 runs axe given. We show that the best designs here are efficient and deserve strong consideration in many practical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example - change in summer runoff at a 2oC increase in global mean temperature varying between -40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1oC, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real estate development appraisal is a quantification of future expectations. The appraisal model relies upon the valuer/developer having an understanding of the future in terms of the future marketability of the completed development and the future cost of development. In some cases the developer has some degree of control over the possible variation in the variables, as with the cost of construction through the choice of specification. However, other variables, such as the sale price of the final product, are totally dependent upon the vagaries of the market at the completion date. To try to address the risk of a different outcome to the one expected (modelled) the developer will often carry out a sensitivity analysis on the development. However, traditional sensitivity analysis has generally only looked at the best and worst scenarios and has focused on the anticipated or expected outcomes. This does not take into account uncertainty and the range of outcomes that can happen. A fuller analysis should include examination of the uncertainties in each of the components of the appraisal and account for the appropriate distributions of the variables. Similarly, as many of the variables in the model are not independent, the variables need to be correlated. This requires a standardised approach and we suggest that the use of a generic forecasting software package, in this case Crystal Ball, allows the analyst to work with an existing development appraisal model set up in Excel (or other spreadsheet) and to work with a predetermined set of probability distributions. Without a full knowledge of risk, developers are unable to determine the anticipated level of return that should be sought to compensate for the risk. This model allows the user a better understanding of the possible outcomes for the development. Ultimately the final decision will be made relative to current expectations and current business constraints, but by assessing the upside and downside risks more appropriately, the decision maker should be better placed to make a more informed and “better”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty affects all aspects of the property market but one area where the impact of uncertainty is particularly significant is within feasibility analyses. Any development is impacted by differences between market conditions at the conception of the project and the market realities at the time of completion. The feasibility study needs to address the possible outcomes based on an understanding of the current market. This requires the appraiser to forecast the most likely outcome relating to the sale price of the completed development, the construction costs and the timing of both. It also requires the appraiser to understand the impact of finance on the project. All these issues are time sensitive and analysis needs to be undertaken to show the impact of time to the viability of the project. The future is uncertain and a full feasibility analysis should be able to model the upside and downside risk pertaining to a range of possible outcomes. Feasibility studies are extensively used in Italy to determine land value but they tend to be single point analysis based upon a single set of “likely” inputs. In this paper we look at the practical impact of uncertainty in variables using a simulation model (Crystal Ball ©) with an actual case study of an urban redevelopment plan for an Italian Municipality. This allows the appraiser to address the issues of uncertainty involved and thus provide the decision maker with a better understanding of the risk of development. This technique is then refined using a “two-dimensional technique” to distinguish between “uncertainty” and “variability” and thus create a more robust model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid expansion of the TMT sector in the late 1990s and more recent growing regulatory and corporate focus on business continuity and security have raised the profile of data centres. Data centres offer a unique blend of occupational, physical and technological characteristics compared to conventional real estate assets. Limited trading and heterogeneity of data centres also causes higher levels of appraisal uncertainty. In practice, the application of conventional discounted cash flow approaches requires information about a wide range of inputs that is difficult to derive from limited market signals or estimate analytically. This paper outlines an approach that uses pricing signals from similar traded cash flows is proposed. Based upon ‘the law of one price’, the method draws upon the premise that two identical future cash flows must have the same value now. Given the difficulties of estimating exit values, an alternative is that the expected cash flows of data centre are analysed over the life cycle of the building, with corporate bond yields used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds. Although there are rarely assets that have identical cash flows and some approximation is necessary, the level of appraiser subjectivity is dramatically reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to improve the communication of the probabilistic flood forecasts generated by hydrological ensemble prediction systems (HEPS) by understanding perceptions of different methods of visualizing probabilistic forecast information. This study focuses on interexpert communication and accounts for differences in visualization requirements based on the information content necessary for individual users. The perceptions of the expert group addressed in this study are important because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to nonexperts. In this article, we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about the best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider the essential information that should accompany plots and diagrams. In this article, we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) and data from a coupled climate–carbon cycle general circulation model to investigate the impact of direct heterotrophic respiration dependence on soil moisture on the climate carbon cycle feedback. Global changes in soil moisture acted to oppose temperature‐driven decreases in soil carbon and hence tended to increase soil carbon storage. We found considerable uncertainty in soil carbon changes due to the response of soil respiration to soil moisture. The use of different SMRFs resulted in both large losses and small gains in future global soil carbon stocks, whether considering all climate forcings or only moisture changes. Regionally, the greatest range in soil carbon changes across SMRFs was found where the largest soil carbon changes occurred. Further research is needed to constrain the soil moisture–respiration relationship and thus reduce uncertainty in climate–carbon cycle feedbacks. There may also be considerable uncertainty in the regional responses of soil carbon to soil moisture changes since climate model predictions of regional soil moisture changes are less coherent than temperature changes.