5 resultados para rDNA intergenic region

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alanine dehydrogenase (AldA) is the principal enzyme with which pea bacteroids synthesize alanine de novo. In free-living culture, AMA activity is induced by carboxylic acids (succinate, malate, and pyruvate), although the best inducer is alanine. Measurement of the intracellular concentration of alanine showed that AldA contributes to net alanine synthesis in laboratory cultures. Divergently transcribed from aldA is an AsnC type regulator, aldR. Mutation of aldR prevents induction of AldA activity. Plasmid-borne gusA fusions showed that aldR is required for transcription of both aldA and aldR; hence, AldR is autoregulatory. However, plasmid fusions containing the aldA-aldR intergenic region could apparently titrate out AldR, sometimes resulting in a complete loss of AldA enzyme activity. Therefore, integrated aldR::gusA and aldA::gusA fusions, as well as Northern blotting, were used to confirm the induction of aldA activity. Both aldA and aldR were expressed in the II/III interzone and zone III of pea nodules. Overexpression of aldA in bacteroids did not alter the ability of pea plants to fix nitrogen, as measured by acetylene reduction, but caused a large reduction in the size and dry weight of plants. This suggests that overexpression of aldA impairs the ability of bacteroids to donate fixed nitrogen that the plant can productively assimilate. We propose that the role of AldA may be to balance the alanine level for optimal functioning of bacteroid metabolism rather than to synthesize alanine as the sole product of N-2 reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The APOC3 −2854T>G polymorphism lies in the APOC3–A4 intergenic region. In a group of healthy adults, this polymorphism was associated with circulating triglycerides, with 55% lower fasting levels in the homozygous wild-type (TT) compared to the homozygous rare allele (GG) genotype. Age and gender had a significant impact on genotype–triglyceride interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 23S ribosomal RNA (rRNA) gene has been sequenced in strains of the fish pathogens Photobacterium damselae subsp. damselae (ATCC 33539) and subsp. piscicida (ATCC 29690), showing that 3 nucleotide positions are clearly different between subspecies. In addition, the 5S rRNA gene plus the intergenic spacer region between the 23S and 5S rRNA genes (ITS-2) were amplified, cloned and sequenced for the 2 reference strains as well as the field isolates RG91 (subsp. damselae) and DI21 (subsp. piscicida). A 100% similarity was found for the consensus 5S rRNA gene sequence in the 2 subspecies, although some microheterogeneity was detected as inter-cistronic variability within the same chromosome. Sequence analysis of the spacer region between the 23S and 5S rRNA genes revealed 2 conserved and 3 variable nucleotide sequence blocks, and 4 different modular organizations were found. The ITS-2 spacer region exhibited both inter-subspecies and inter-cistronic polymorphism, with a mosaic-like structure. The EMBL accession numbers for the 23S, 5S and ITS-2 sequences are: P. damselae subsp. piscicida 5S gene (AJ274379), P. damselae subsp. damselae 23S gene (Y18520), subsp. piscicida 23S gene (Y17901), R damselae subsp. piscicida ITS-2 (AJ250695, AJ250696), P. damselae subsp. damselae ITS-2 (AJ250697, AJ250698).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(LyS(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Val(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC)) -tRNA(Val(UAC)) -tRNA(Ala(UGC)) and tRNA(Glu(UUC)) -tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptospira have a worldwide distribution and include important zoonotic pathogens yet diagnosis and differentiation still tend to rely on traditional bacteriological and serological approaches. In this study a 1.3 kb fragment of the rrs gene (16S rDNA) was sequenced from a panel of 22 control strains, representing serovars within the pathogenic species Leptospira interrogans, Leptospira borgpetersenii, and Leptospira kirschneri, to identify single nucleotide polymorphisms (SNPs). These were identified in the 5' variable region of the 16S sequence and a 181 bp PCR fragment encompassing this region was used for speciation by Denaturing High Performance Liquid Chromatography (D-HPLC). This method was applied to eleven additional species, representing pathogenic, non-pathogenic and intermediate species and was demonstrated to rapidly differentiate all but 2 of the non-pathogenic Leptospira species. The method was applied successfully to infected tissues from field samples proving its value for diagnosing leptospiral infections found in animals in the UK. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.