95 resultados para query reformulation, search pattern, search strategy
em CentAUR: Central Archive University of Reading - UK
Resumo:
Abstract Objective: To systematically review the available evidence on whether national or international agricultural policies that directly affect the price of food influence the prevalence rates of undernutrition or nutrition-related chronic disease in children and adults. Design: Systematic review. Setting: Global. Search strategy: We systematically searched five databases for published literature (MEDLINE, EconLit, Agricola, AgEcon Search, Scopus) and systematically browsed other databases and relevant organisational websites for unpublished literature. Reference lists of included publications were hand-searched for additional relevant studies. We included studies that evaluated or simulated the effects of national or international food-price-related agricultural policies on nutrition outcomes reporting data collected after 1990 and published in English. Primary and secondary outcomes: Prevalence rates of undernutrition (measured with anthropometry or clinical deficiencies) and overnutrition (obesity and nutrition-related chronic diseases including cancer, heart disease and diabetes). Results: We identified a total of four relevant reports; two ex post evaluations and two ex ante simulations. A study from India reported on the undernutrition rates in children, and the other three studies from Egypt, the Netherlands and the USA reported on the nutrition related chronic disease outcomes in adults. Two of the studies assessed the impact of policies that subsidised the price of agricultural outputs and two focused on public food distribution policies. The limited evidence base provided some support for the notion that agricultural policies that change the prices of foods at a national level can have an effect on population-level nutrition and health outcomes. Conclusions: A systematic review of the available literature suggests that there is a paucity of robust direct evidence on the impact of agricultural price policies on nutrition and health.
Resumo:
Parents’ verbal communication to their child, particularly the expression of fear-relevant information (e.g., attributions of threat to the environment), is considered to play a key role in children’s fears and anxiety. This review considers the extent to which parental verbal communication is associated with child anxiety by examining research that has employed objective observational methods. Using a systematic search strategy, we identified 15 studies that addressed this question. These studies provided some evidence that particular fear-relevant features of parental verbal communication are associated with child anxiety under certain conditions. However, the scope for drawing reliable, general conclusions was limited by extensive methodological variation between studies, particularly in terms of the features of parental verbal communication examined and the context in which communication took place, how child anxiety was measured, and inconsistent consideration of factors that may moderate the verbal communication–child anxiety relationship. We discuss ways in which future research can contribute to this developing evidence base and reduce further methodological inconsistency so as to inform interventions for children with anxiety problems.
Resumo:
PURPOSE: Consumption of sugar-reformulated products (commercially available foods and beverages that have been reduced in sugar content through reformulation) is a potential strategy for lowering sugar intake at a population level. The impact of sugar-reformulated products on body weight, energy balance (EB) dynamics and cardiovascular disease risk indicators has yet to be established. The REFORMulated foods (REFORM) study examined the impact of an 8-week sugar-reformulated product exchange on body weight, EB dynamics, blood pressure, arterial stiffness, glycemia and lipemia. METHODS: A randomized, controlled, double-blind, crossover dietary intervention study was performed with fifty healthy normal to overweight men and women (age 32.0 ± 9.8 year, BMI 23.5 ± 3.0 kg/m2) who were randomly assigned to consume either regular sugar or sugar-reduced foods and beverages for 8 weeks, separated by 4-week washout period. Body weight, energy intake (EI), energy expenditure and vascular markers were assessed at baseline and after both interventions. RESULTS: We found that carbohydrate (P < 0.001), total sugars (P < 0.001) and non-milk extrinsic sugars (P < 0.001) (% EI) were lower, whereas fat (P = 0.001) and protein (P = 0.038) intakes (% EI) were higher on the sugar-reduced than the regular diet. No effects on body weight, blood pressure, arterial stiffness, fasting glycemia or lipemia were observed. CONCLUSIONS: Consumption of sugar-reduced products, as part of a blinded dietary exchange for an 8-week period, resulted in a significant reduction in sugar intake. Body weight did not change significantly, which we propose was due to energy compensation.
Resumo:
Searching for and mapping the physical extent of unmarked graves using geophysical techniques has proven difficult in many cases. The success of individual geophysical techniques for detecting graves depends on a site-by-site basis. Significantly, detection of graves often results from measured contrasts that are linked to the background soils rather than the type of archaeological feature associated with the grave. It is evident that investigation of buried remains should be considered within a 3D space as the variation in burial environment can be extremely varied through the grave. Within this paper, we demonstrate the need for a multi-method survey strategy to investigate unmarked graves, as applied at a “planned” but unmarked pauper’s cemetery. The outcome from this case study provides new insights into the strategy that is required at such sites. Perhaps the most significant conclusion is that unmarked graves are best understood in terms of characterization rather than identification. In this paper, we argue for a methodological approach that, while following the current trends to use multiple techniques, is fundamentally dependent on a structured approach to the analysis of the data. The ramifications of this case study illustrate the necessity of an integrated strategy to provide a more holistic understanding of unmarked graves that may help aid in management of these unseen but important aspects of our heritage. It is concluded that the search for graves is still a current debate and one that will be solved by methodological rather than technique-based arguments.
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.
Resumo:
The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.
Resumo:
In this paper we present a connectionist searching technique - the Stochastic Diffusion Search (SDS), capable of rapidly locating a specified pattern in a noisy search space. In operation SDS finds the position of the pre-specified pattern or if it does not exist - its best instantiation in the search space. This is achieved via parallel exploration of the whole search space by an ensemble of agents searching in a competitive cooperative manner. We prove mathematically the convergence of stochastic diffusion search. SDS converges to a statistical equilibrium when it locates the best instantiation of the object in the search space. Experiments presented in this paper indicate the high robustness of SDS and show good scalability with problem size. The convergence characteristic of SDS makes it a fully adaptive algorithm and suggests applications in dynamically changing environments.
Resumo:
Stochastic Diffusion Search is an efficient probabilistic bestfit search technique, capable of transformation invariant pattern matching. Although inherently parallel in operation it is difficult to implement efficiently in hardware as it requires full inter-agent connectivity. This paper describes a lattice implementation, which, while qualitatively retaining the properties of the original algorithm, restricts connectivity, enabling simpler implementation on parallel hardware. Diffusion times are examined for different network topologies, ranging from ordered lattices, over small-world networks to random graphs.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
Holocene tidal palaoechannels, Severn Estuary Levels, UK: a search for granulometric and foraminiferal criteria. Proceedings of the Geologists' Association, 117, 329-344. Grain-size characteristics (by laser granulometry) and foraminiferal assemblages have been established for silts accumulated in five, dissimilar tidal palaeochannels of mid or late Holocene age in the Severn Estuary Levels, representative of muddy tidal systems. For purposes of general comparison, similar data were obtained from a representative active tidal inlet in the area, but all of these channels have been subject to human interference and are not relied upon as a model for environmental interpretation. Although the palaeochannel deposits differ substantially in their bedding characteristics and stratigraphical relationships from the level-bedded salt-marsh platform and mudflat deposits with which they are associated, and although the channel environment is distinctive morphologically and hydraulically, no critical textural differences could be found between the channel deposits and the associated facies. Similarly, no foraminiferal assemblages distinctive of a tidal channel were encountered. Instead, the assemblages compare with those from mudflats and salt-marsh platforms. It is concluded that the sides of the subfossil channels carried some vegetation, as was observed to be the case in the modern inlet. An alternative approach is necessary if concealed palaeochannel deposits are to be recognized in muddy systems from limited numbers of subsurface samples. Although the palaeochannels afforded no characteristic textural signature, they yield transverse grain-size patterns pointing to coastal movements during their evolution. Concave-up trends suggest outward coastal building, whereas convex-up ones point to marsh-edge retreat.
Resumo:
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.
Resumo:
In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.