3 resultados para quantum efficiency

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of different sky conditions on diffuse PAR fraction (ϕ), air temperature (Ta), vapor pressure deficit (vpd) and GPP in a deciduous forest is investigated using eddy covariance observations of CO2 fluxes and radiometer and ceilometer observations of sky and PAR conditions on hourly and growing season timescales. Maximum GPP response occurred under moderate to high PAR and ϕ and low vpd. Light response models using a rectangular hyperbola showed a positive linear relation between ϕ and effective quantum efficiency (α = 0.023ϕ + 0.012, r2 = 0.994). Since PAR and ϕ are negatively correlated, there is a tradeoff between the greater use efficiency of diffuse light and lower vpd and the associated decrease in total PAR available for photosynthesis. To a lesser extent, light response was also modified by vpd and Ta. The net effect of these and their relation with sky conditions helped enhance light response under sky conditions that produced higher ϕ. Six sky conditions were classified from cloud frequency and ϕ data: optically thick clouds, optically thin clouds, mixed sky (partial clouds within hour), high, medium and low optical aerosol. The frequency and light responses of each sky condition for the growing season were used to predict the role of changing sky conditions on annual GPP. The net effect of increasing frequency of thick clouds is to decrease GPP, changing low aerosol conditions has negligible effect. Increases in the other sky conditions all lead to gains in GPP. Sky conditions that enhance intermediate levels of ϕ, such as thin or scattered clouds or higher aerosol concentrations from volcanic eruptions or anthropogenic emissions, will have a positive outcome on annual GPP, while an increase in cloud cover will have a negative impact. Due to the ϕ/PAR tradeoff and since GPP response to changes in individual sky conditions differ in sign and magnitude, the net response of ecosystem GPP to future sky conditions is non-linear and tends toward moderation of change.