8 resultados para quality estimation
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.
Resumo:
The general focus of this paper is the regional estimation of marginal benefits of targeted water pollution abatement to instream uses. Benefit estimates are derived from actual consumer choices of recreational fishing activities and the implied expenditures for various levels of water quality. The methodology is applied to measuring the benefits accruing to recreational anglers in Indiana from the abatement of pollutants that are by-products of agricultural crop production.
Resumo:
Once you have generated a 3D model of a protein, how do you know whether it bears any resemblance to the actual structure? To determine the usefulness of 3D models of proteins, they must be assessed in terms of their quality by methods that predict their similarity to the native structure. The ModFOLD4 server is the latest version of our leading independent server for the estimation of both the global and local (per-residue) quality of 3D protein models. The server produces both machine readable and graphical output, providing users with intuitive visual reports on the quality of predicted protein tertiary structures. The ModFOLD4 server is freely available to all at: http://www.reading.ac.uk/bioinf/ModFOLD/.
Resumo:
Three wind gust estimation (WGE) methods implemented in the numerical weather prediction (NWP) model COSMO-CLM are evaluated with respect to their forecast quality using skill scores. Two methods estimate gusts locally from mean wind speed and the turbulence state of the atmosphere, while the third one considers the mixing-down of high momentum within the planetary boundary layer (WGE Brasseur). One hundred and fifty-eight windstorms from the last four decades are simulated and results are compared with gust observations at 37 stations in Germany. Skill scores reveal that the local WGE methods show an overall better behaviour, whilst WGE Brasseur performs less well except for mountain regions. The here introduced WGE turbulent kinetic energy (TKE) permits a probabilistic interpretation using statistical characteristics of gusts at observational sites for an assessment of uncertainty. The WGE TKE formulation has the advantage of a ‘native’ interpretation of wind gusts as result of local appearance of TKE. The inclusion of a probabilistic WGE TKE approach in NWP models has, thus, several advantages over other methods, as it has the potential for an estimation of uncertainties of gusts at observational sites.
Resumo:
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Resumo:
In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.