2 resultados para quadrants

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metal I oestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses experimental and theoretical investigations and Computational Fluid Dynamics (CFD) modelling considerations to evaluate the performance of a square section wind catcher system connected to the top of a test room for the purpose of natural ventilation. The magnitude and distribution of pressure coefficients (C-p) around a wind catcher and the air flow into the test room were analysed. The modelling results indicated that air was supplied into the test room through the wind catcher's quadrants with positive external pressure coefficients and extracted out of the test room through quadrants with negative pressure coefficients. The air flow achieved through the wind catcher depends on the speed and direction of the wind. The results obtained using the explicit and AIDA implicit calculation procedures and CFX code correlate relatively well with the experimental results at lower wind speeds and with wind incidents at an angle of 0 degrees. Variation in the C-p and air flow results were observed particularly with a wind direction of 45 degrees. The explicit and implicit calculation procedures were found to be quick and easy to use in obtaining results whereas the wind tunnel tests were more expensive in terms of effort, cost and time. CFD codes are developing rapidly and are widely available especially with the decreasing prices of computer hardware. However, results obtained using CFD codes must be considered with care, particularly in the absence of empirical data.