22 resultados para proxy data
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive) and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907) and the nearby Seddin observatories (1908–1910) and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used before 1872. This is therefore also true of the IDV index which makes direct use of the u index values.
Resumo:
The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.
Resumo:
The southern Levant has a long history of human habitation and it has been previously suggested that climatic changes during the Late Pleistocene-Holocene stimulated changes in human behaviour and society. In order to evaluate such linkages, it is necessary to have a detailed understanding of the climate record. We have conducted an extensive and up-to-date review of terrestrial and marine climatic conditions in the Levant and Eastern Mediterranean during the last 25,000 years. We firstly present data from general circulation models (GCMs) simulating the climate for the last glacial maximum (LGM), and evaluate the output of the model by reference to geological climate proxy data. We consider the types of climate data available from different environments and proxies and then present the spatial climatic "picture" for key climatic events. This exercise suggests that the major Northern Hemisphere climatic fluctuations of the last 25,000 years are recorded in the Eastern Mediterranean and Levantine region. However, this review also highlights problems and inadequacies with the existing data. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.
Resumo:
A detailed analysis is presented of solar UV spectral irradiance for the period between May 2003 and August 2005, when data are available from both the Solar Ultraviolet pectral Irradiance Monitor (SUSIM) instrument (on board the pper Atmosphere Research Satellite (UARS) spacecraft) and the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instrument (on board the Solar Radiation and Climate Experiment (SORCE) satellite). The ultimate aim is to develop a data composite that can be used to accurately determine any differences between the “exceptional” solar minimum at the end of solar cycle 23 and the previous minimum at the end of solar cycle 22 without having to rely on proxy data to set the long‐term change. SUSIM data are studied because they are the only data available in the “SOLSTICE gap” between the end of available UARS SOLSTICE data and the start of the SORCE data. At any one wavelength the two data sets are considered too dissimilar to be combined into a meaningful composite if any one of three correlations does not exceed a threshold of 0.8. This criterion removes all wavelengths except those in a small range between 156 nm and 208 nm, the longer wavelengths of which influence ozone production and heating in the lower stratosphere. Eight different methods are employed to intercalibrate the two data sequences. All methods give smaller changes between the minima than are seen when the data are not adjusted; however, correcting the SUSIM data to allow for an exponentially decaying offset drift gives a composite that is largely consistent with the unadjusted data from the SOLSTICE instruments on both UARS and SORCE and in which the recent minimum is consistently lower in the wave band studied.
Resumo:
During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level has remained a challenge especially with the additional δ13C constraint. Indeed the LGM carbon cycle was also characterized by a modern-like δ13C in the atmosphere and a higher surface to deep Atlantic δ13C gradient indicating probable changes in the thermohaline circulation. Here we show with a model of intermediate complexity, that adding three oceanic mechanisms: brine induced stratification, stratification-dependant diffusion and iron fertilization to the standard glacial simulation (which includes sea level drop, temperature change, carbonate compensation and terrestrial carbon release) decreases CO2 down to the glacial value of ∼190 ppm and simultaneously matches glacial atmospheric and oceanic δ13C inferred from proxy data. LGM CO2 and δ13C can at last be successfully reconciled.
Resumo:
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; *900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.
Resumo:
Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~ 19), because the mussels appear to cease growing. This implies that Mytilus edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid-region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south–north gradient, and by sampling shells from raised shorelines and archaeological shell middens from prehistoric settlements in Greenland.
Resumo:
We examine mid- to late Holocene centennial-scale climate variability in Ireland using proxy data from peatlands, lakes and a speleothem. A high degree of between-record variability is apparent in the proxy data and significant chronological uncertainties are present. However, tephra layers provide a robust tool for correlation and improve the chronological precision of the records. Although we can find no statistically significant coherence in the dataset as a whole, a selection of high-quality peatland water table reconstructions co-vary more than would be expected by chance alone. A locally weighted regression model with bootstrapping can be used to construct a ‘best-estimate’ palaeoclimatic reconstruction from these datasets. Visual comparison and cross-wavelet analysis of peatland water table compilations from Ireland and Northern Britain show that there are some periods of coherence between these records. Some terrestrial palaeoclimatic changes in Ireland appear to coincide with changes in the North Atlantic thermohaline circulation and solar activity. However, these relationships are inconsistent and may be obscured by chronological uncertainties. We conclude by suggesting an agenda for future Holocene climate research in Ireland.
Resumo:
During the Last Glacial Maximum, the climate was substantially colder and the carbon cycle was clearly different from the late Holocene. According to proxy data deep oceanic δ13C was very low, and the atmospheric CO2 concentration also reduced. Several mechanisms have been proposed to explain these changes, but none can fully explain the data, especially the very low deep ocean δ13C values. Oceanic core data show that the deep ocean was very cold and salty, which would lead to enhanced deep ocean stratification. We show that such an enhanced stratification in the coupled climate model CLIMBER-2 helps get very low deep oceanic δ13C values. Indeed the simulated δ13C reaches values as low as −0.8‰ in line with proxy data evidences. Moreover it increases the oceanic carbon reservoir leading to a small, yet robust, atmospheric CO2 drop of approximately 10 ppm.
Resumo:
Diagnosing the climate of New Zealand from low-resolution General Circulation Models (GCMs) is notoriously difficult due to the interaction of the complex topography and the Southern Hemisphere (SH) mid-latitude westerly winds. Therefore, methods of downscaling synoptic scale model data for New Zealand are useful to help understand past climate. New Zealand also has a wealth of palaeoclimate-proxy data to which the downscaled model output can be compared, and to provide a qualitative method of assessing the capability of GCMs to represent, in this case, the climate 6000 yr ago in the Mid-Holocene. In this paper, a synoptic weather and climate regime classification system using Empirical Orthogonal Function (EOF) analysis of GCM and reanalysis data was used. The climate regimes are associated with surface air temperature and precipitation anomalies over New Zealand. From the analysis in this study, we find at 6000 BP that increased trough activity in summer and autumn led to increased precipitation, with an increased north-south pressure gradient ("zonal events") in winter and spring leading to drier conditions. Opposing effects of increased (decreased) temperature are also seen in spring (autumn) in the South Island, which are associated with the increased zonal (trough) events; however, the circulation induced changes in temperature are likely to have been of secondary importance to the insolation induced changes. Evidence from the palaeoclimate-proxy data suggests that the Mid-Holocene was characterized by increased westerly wind events in New Zealand, which agrees with the preference for trough and zonal regimes in the models.
Resumo:
East Asian summer monsoon (EASM) rainfall impacts the world's most populous regions. Accurate EASM rainfall prediction necessitates robust paleoclimate reconstructions from proxy data and quantitative linkage to modern climatic conditions. Many precisely dated oxygen isotope records from Chinese stalagmites have been interpreted as directly reflecting past EASM rainfall amount variability, but recent research suggests that such records instead integrate multiple hydroclimatic processes. Using a Lagrangian precipitation moisture source diagnostic, we demonstrate that EASM rainfall is primarily derived from the Indian Ocean. Conversely, Pacific Ocean moisture export peaks during winter, and the moisture uptake area does not differ significantly between summer and winter and is thus a minor contributor to monsoonal precipitation. Our results are substantiated by an accurate reproduction of summer and winter spatial rainfall distributions across China. We also correlate modern EASM rainfall oxygen isotope ratios with instrumental rainfall amount and our moisture source data. This analysis reveals that the strength of the source effect is geographically variable, and differences in atmospheric moisture transport may significantly impact the isotopic signature of EASM rainfall at the Hulu, Dongge, and Wanxiang Cave sites. These results improve our ability to isolate the rainfall amount signal in paleomonsoon reconstructions and indicate that precipitation across central and eastern China will directly respond to variability in Indian Ocean moisture supply.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.