10 resultados para proton-air cross section

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise arbitrarily shaped cross section and a single, slowly varying `bulge', symmetric in the longitudinal direction. Extending the work in Biggs (2012), we first employ a WKBJ-type ansatz to identify the possible quasi-mode solutions which propagate only in the thicker region, and hence find a finite cut-on region of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to identify a turning point between the cut-on and cut-on regions. We note that the expansions are nonuniform in an interior layer centred on this point, and we use the method of matched asymptotic expansions to connect the cut-on and cut-on regions within this layer. The behaviour of the expansions within the interior layer then motivates the construction of a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the waveguide around the longitudinal centre, x = 0, to extract trapped mode wavenumbers, which are compared with those found using a numerical scheme and seen to be extremely accurate, even to relatively large values of the small parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A boundary integral equation is described for the prediction of acoustic propagation from a monofrequency coherent line source in a cutting with impedance boundary conditions onto surrounding flat impedance ground. The problem is stated as a boundary value problem for the Helmholtz equation and is subsequently reformulated as a system of boundary integral equations via Green's theorem. It is shown that the integral equation formulation has a unique solution at all wavenumbers. The numerical solution of the coupled boundary integral equations by a simple boundary element method is then described. The convergence of the numerical scheme is demonstrated experimentally. Predictions of A-weighted excess attenuation for a traffic noise spectrum are made illustrating the effects of varying the depth of the cutting and the absorbency of the surrounding ground surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an equation is derived for the mean backscatter cross section of an ensemble of snowflakes at centimeter and millimeter wavelengths. It uses the Rayleigh–Gans approximation, which has previously been found to be applicable at these wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random and unpredictable, the authors find from simulations of the aggregation process that their structure is “self-similar” and can be described by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain, a variable describing their mean shape, and two variables describing the shape of the power spectrum. The exponent of the power law is found to be −. In the case of 1-cm snowflakes observed by a 3.2-mm-wavelength radar, the backscatter is 40–100 times larger than that of a homogeneous ice–air spheroid with the same mass, size, and aspect ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article examines whether commodity risk is priced in the cross-section of global equity returns. We employ a long-only equally-weighted portfolio of commodity futures and a term structure portfolio that captures phases of backwardation and contango as mimicking portfolios for commodity risk. We find that equity-sorted portfolios with greater sensitivities to the excess returns of the backwardation and contango portfolio command higher average excess returns, suggesting that when measured appropriately, commodity risk is pervasive in stocks. Our conclusions are robust to the addition to the pricing model of financial, macroeconomic and business cycle-based risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50–100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly 25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon tetrafluoride (CF4) is included as a greenhouse gas within the Kyoto Protocol. There are significant discrepancies in the reported integrated infrared (IR) absorption cross section of CF4 leading to uncertainty in its contribution to climate change. To reduce this uncertainty, the IR spectrum of CF4 was measured in two different laboratories, in 0 933 hPa of air diluent at 296 +/- 2K over the wavelength range 600-3700 cm(-1) using spectral resolutions of 0.03 or 0.50 cm(-1). There was no discernable effect of diluent gas pressure or spectral resolution on the integrated IR absorption, and a value of the integrated absorption cross section of (1.90 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) was derived. The radiative efficiency (radiative forcing per ppbv) and GWP (relative to CO2) of CF4 were calculated to be 0.102 W m(-2) ppbv(-1) and 7200 (100 year time horizon). The GWP for CF4 calculated herein is approximately 30% greater than that given by the Intergovernmental Panel on Climate Change (IPCC) [ 2002] partly due to what we believe to be an erroneously low value for the IR absorption strength of CF4 assumed in the calculations adopted by the IPCC. The radiative efficiency of CF4 is predicted to decrease by up to 40% as the CF4 forcing starts to saturate and overlapping absorption by CH4, H2O, and N2O in the atmosphere increases over the period 1750-2100. The radiative forcing attributable to increased CF4 levels in the atmosphere from 1750 to 2000 is estimated to be 0.004 W m(-2) and is predicted to be up to 0.033 W m(-2) from 2000 to 2100, dependent on the scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reaction CH3SCH3 + Cl2 → CH3SCH2Cl + HCl bands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy. A method has also been developed, with the flow-tube/PE spectrometer combination used, to measure photoionization cross-sections of the reagents and products at the photon energy utilized and this has allowed the photoionization cross-section of the intermediate to be estimated. This work augments an earlier study in which the rate constant of the reaction between CH3SCH3 (DMS) and Cl2 has been measured at room temperature.