9 resultados para protein processing

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructurall protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hedgehog proteins are important cell-cell signalling proteins utilized during the development of multicellular animals. Members of the hedgehog gene family have not been detected outside the Metazoa, raising unanswered questions about their evolutionary origin. Here we report a highly unusual hedgehog-related gene from a choanoflagellate, a close unicellular relative of the animals. The deduced C-terminal domain, Hoglet-C, is homologous to the autocatalytic domain of Hedgehog proteins and is predicted to function in autocatalytic cleavage of the precursor peptide. In contrast, the N-terminal Hoglet-N peptide has no similarity to the signalling peptide of Hedgehog (Hh-N). Instead, Hoglet-N is deduced to be a secreted protein with an enormous threonine-rich domain of unprecedented size and purity (over 200 threonine residues) and two polysaccharide-binding domains. Structural modelling reveals that these domains have a novel combination of features found in cellulose-binding domains (CBD) of types IIa and IIb, and are expected to bind cellulose. We propose that the two CBD domains enable Hoglet-N to bind to plant matter, tethering an amorphous nucleophilic anchor, facilitating transient adhesion of the choanoflagellate cell. Since HhC and Hoglet-C are homologous, but Hh-N and Hoglet-N are not, we argue that metazoan hedgehog genes evolved by fusion of two distinct genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is just over 30 years since the definitive identification of the adrenocorticotrophin (ACTH) precursor, pro-opiomelanocotin (POMC). Although first characterised in the anterior and intermediate lobes of the pituitary, POMC is also expressed in a number of both central and peripheral tissues including the skin, central nervous tissue and placenta. Following synthesis, POMC undergoes extensive post-translational processing producing not only ACTH, but also a number of other biologically active peptides. The extent and pattern of this processing is tissue-specific, the end result being the tissue dependent production of different combinations of peptides from the same precursor. These peptides have a diverse range of biological roles ranging from pigmentation to adrenal function to the regulation of feeding. This level of complexity has resulted in POMC becoming the archetypal model for prohormone processing, illustrating how a single protein combined with post-translational modification can have a diverse number of roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and physical properties of raw milk from a commercial herd were studied over a one year period in order to understand how best to utilise milk for processing throughout the year. Protein and fat levels demonstrated seasonal trends, while minerals and many physical properties displayed considerable variations, which were apparently unrelated to season. However, rennet clotting time, ethanol stability and foaming ability were subject to seasonal variation. Many significant interrelationships in physico-chemical properties were found. It is clear that the milk supply may be more suited to the manufacture of different products at different times of the year or even on a day to day basis. Subsequent studies will report on variation in production and quality of products manufactured from the same milk samples described in the current study and will thus highlight potential advantages of seasonal processing of raw milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein- Friesian cattle was collected across the year and blended (n=55), to maximise variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variables for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.