33 resultados para protein binding

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel method for scoring the accuracy of protein binding site predictions – the Binding-site Distance Test (BDT) score. Recently, the Matthews Correlation Coefficient (MCC) has been used to evaluate binding site predictions, both by developers of new methods and by the assessors for the community wide prediction experiment – CASP8. Whilst being a rigorous scoring method, the MCC does not take into account the actual 3D location of the predicted residues from the observed binding site. Thus, an incorrectly predicted site that is nevertheless close to the observed binding site will obtain an identical score to the same number of nonbinding residues predicted at random. The MCC is somewhat affected by the subjectivity of determining observed binding residues and the ambiguity of choosing distance cutoffs. By contrast the BDT method produces continuous scores ranging between 0 and 1, relating to the distance between the predicted and observed residues. Residues predicted close to the binding site will score higher than those more distant, providing a better reflection of the true accuracy of predictions. The CASP8 function predictions were evaluated using both the MCC and BDT methods and the scores were compared. The BDT was found to strongly correlate with the MCC scores whilst also being less susceptible to the subjectivity of defining binding residues. We therefore suggest that this new simple score is a potentially more robust method for future evaluations of protein-ligand binding site predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding parameters for the interactions of pentagalloyl glucose (PGG) and four hydrolyzable tannins (representing gallotannins and ellagitannins) with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction of PGG and isolated mixtures of tara gallotannins and of sumac gallotannins with gelatin and BSA were of the same order of magnitude for each tannin (in the range of 10(4)-10(5) M-1 for stronger binding sites when using a binding model consisting of two sets of multiple binding sites). In contrast, isolated mixtures of chestnut ellagitannins and of myrabolan ellagitannins exhibited 3-4 orders of magnitude greater equilibrium binding constants for the interaction with gelatin (similar to 2 x 10(6) M-1) than for that with BSA (similar to 8 x 10(2) M-1). Binding stoichiometries revealed that the stronger binding sites on gelatin outnumbered those on BSA by a ratio of at least similar to 2:1 for all of the hydrolyzable tannins studied. Overall, the data revealed that relative binding constants for the interactions with gelatin and BSA are dependent on the structural flexibility of the tannin molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphospborylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5' end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two novel benzodioxotetraaza macrocycles [2,9-dioxo-1,4,7,10-tetraazabicyclo[10.4.0]1,11-hexadeca-1(11),13,15-triene (H(2)L1) and 2,10-dioxo-1,4,8,11-tetraazabicyclo[11.4.0]1,12-heptadeca-1(12),14,16-triene (H(2)L2)] were synthesized by a [1 + 1] crablike cyclization. The protonation constants of both ligands were determined by H-1 NMR titration and by potentiometry at 25.0 degrees C in 0.10 M ionic strength in KNO3. The latter method was also used to ascertain the stability constants of their copper(II) complexes. These studies showed that the CuL1 complex has a much lower thermodynamic stability than the CuL2, and the H(2)L2 displays an excellent affinity for copper(II), due to the good fit of copper(II) into its cavity. The copper complexes of the novel ligands were characterized by electronic spectroscopy in solution and by crystal X-ray diffraction. These studies indicated that the copper center in the CuL1 complex adopts a square-pyramidal geometry with the four nitrogen atoms of the macrocycle forming the equatorial plane and a water molecule at axial position, and the copper in the CuL2 complex is square-planar. Several labeling conditions were tested, and only H(2)L2 could be labeled with Cu-67 efficiently (> 98%) in mild conditions (39 degrees C, 15 min) to provide a slightly hydrophilic radioligand (log D = -0.19 +/- 0.03 at pH 7.4). The in vitro stability was studied in the presence of different buffers or with an excess of diethylenetriamine-pentaethanoic acid. Very high stability was shown under these conditions for over 5 days. The incubation of the radiocopper complex in human serum showed 6% protein binding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure alpha-lactoglobulin solution was in excess of 1.5 mg/cm(2) of membrane. This binding capacity was reduced to approximately 1.2 mg/cm(2) when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dietary isoflavones are currently receiving much attention because of their potential role in preventing coronary artery disease and other chronic diseases. Accumulating evidence from cell culture and laboratory animal experiments indicates that isoflavones have the potential to prevent or delay atherogenesis. Suggested mechanisms of action include: a reduction in low-density lipoprotein (LDL) cholesterol and a potential reduction in the susceptibility of the LDL particle to oxidation; (2) an improvement in vascular reactivity; (3) an inhibition of pro-inflammatory cytokines, cell adhesion proteins and nitric oxide (NO) production; and (4) an inhibition of platelet aggregation. These mechanisms are consistent with the epidemiological evidence that a high consumption of isoflavone-rich soy products is associated with a reduced incidence of coronary artery disease. Biological effects of isoflavones are dependent on many factors, including dose consumed, duration of use, protein-binding affinity, and an individual's metabolism or intrinsic oestrogenic state. Further clinical studies are necessary to determine the potential health effects of isoflavones in specific population groups as we currently know little about age-related differences in exposure to these compounds and there are few guidelines on optimal dose for cardiovascular health benefits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates proteinprotein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context: Pregnant tissues express corticotropin-releasing factor (CRF), a peptide modulating fetal and placental ACTH and cortisol secretion. These actions are modulated by the locally expressed CRF-binding protein (CRF-BP). Objective: The objective of the study was to determine whether CRF, CRF-BP, ACTH, and cortisol concentrations change in amniotic fluid and umbilical cord plasma in the presence of intraamniotic infection/inflammation (IAI) in women with spontaneous labor at term. Design: This was a cross-sectional study. Setting: The study was conducted at a tertiary referral center for obstetric care. Patients: Patients included women in active labor at term with (n = 39) and without (controls; n = 78) IAI. Main Outcome Measures: Amniotic fluid and umbilical cord plasma concentrations of CRF, CRF-BP, ACTH, and cortisol measured by RIA and immunoradiometric assays were measured. Results: In patients with IAI, amniotic fluid CRF (0.97 +/- 0.18 ng/ml) and CRF-BP (33.06 +/- 5.54 nmol/liter) concentrations were significantly (P < 0.001) higher than in controls (CRF: 0.32 +/- 0.04 ng/ml; CRF-BP: 14.69 +/- 2.79 ml). The umbilical cord plasma CRF and CRF-BP concentrations were significantly (P < 0.001 for all) higher in women with IAI than in controls (CRF: 2.96 +/- 0.35 ng/ml vs. 0.38 +/- 0.18 ng/ml; CRF-BP: 152.12 +/- 5.94 nmol/liter vs. 106.9 +/- 5.97 nmol/liter). In contrast, amniotic fluid and umbilical cord plasma ACTH and cortisol concentrations did not differ between groups. Conclusions: Amniotic fluid and umbilical cord plasma CRF and CRF-BP concentrations are increased in women with spontaneous labor at term and IAI. CRF-BP may modulate CRF actions on ACTH and cortisol secretion, playing a pivotal role in limiting the inflammatory process and thus avoiding an overactivation of the fetal/placental hypothalamus-pituitary-adrenal axis at birth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximate to 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.