6 resultados para protein, semiconductor, solar energy
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents an experimental measurement campaign of urban microclimate for a building complex located in London, the United Kingdom. The experiment was carried out between 19 July and 16 August, 2010 at the Elephant & Castle site. The wind and solar energy distributions within the London urban experimental site were assessed in detail for their potential use in areas of high-rise urban building complexes. The climatic variables were measured at every five minutes for the air temperature, the wind speed and direction, the air humidity and the global solar radiation for a period of four weeks. The surface temperatures were also measured on the asphalt road, pavement and building walls at every hour for the first week of the campaign period. The effect of the building complex on the urban microclimate has been analyzed in terms of the solar radiation, the air temperature and velocity. The information and observation obtained from this campaign will be useful to the analysis of renewable energy implementations in dense urban situations.
Resumo:
FOREWORD Welcome to this West Africa Built Environment Research (WABER) conference taking place here in Ghana. Thank you for coming and welcome to Accra. The main aims of the WABER conference are: to help young researchers and early-career scholars in West Africa to develop their research work and skills through constructive face-to-face interaction with experienced academics; to provide a platform for networking and collaborative work among senior built environment academics in West Africa; and to serve as a vehicle for developing the field of construction management and economics in Africa. Waber 2009 The WABER event in 2009 was held at the British Council in Accra, Ghana on 2-3 June. The event was a resounding success. It attracted participation from 32 researchers, from 12 different institutions, who presented their work to an audience of approximately 100 people. Each presenter received immediate and constructive feedback from an international panel. The event was opened by Professor K.K. Adarkwa, Vice Chancellor of KNUST, Kumasi, Ghana, with several senior academics and researchers from universities, polytechnics, and other institutions in Ghana and Nigeria in attendance. There was also a significant level of attendance by senior construction practitioners in Ghana. Thank you to the School of Construction Management and Engineering, University of Reading, UK for funding the inaugural event in 2009. We are also grateful to all of you who helped to make the event a success and to those of you who have joined us here today to build upon the success and legacy of WABER 2009. Waber 2010 This year, we have 60+ peer-reviewed papers and presentations on topics relating to Building services and maintenance, Construction costs, Construction design and technology, Construction education, Construction finance, Construction procurement, Contract administration, Contract management, Contractor development, Decision support systems, Dispute resolution, Economic development, Energy efficiency, Environment and sustainability, Health and safety, Human resources, Information technology, Marketing, Materials science, Organisation strategy and business performance, Productivity, Project management, Quantity surveying, Real estate and planning, Solar energy systems, Supply chain management and Urban development. We hope that these papers will generate interest among delagates and stimulate discussion here and beyond the conference into the wider community of academia and industry. The delegates at this conference come from 10 different countries. This provides a rich international and multicultural blend and a perfect platform for networking and developing collaborations. This year we are blessed to have three high profile keynote speakers in the persons of Professor George Ofori (National University of Singapore), Dr Roine Leiringer (University of Reading, UK) and Professor Will Hughes (University of Reading, UK). We are also thankful to Dr Chris Harty (University of Reading, UK) who is facilitating the Research Skills Workshop on ‘Writing a scientific article’. Thank you to Dr Sena Agyepong of our conference organising team for her capable management of local organising arrangements. And above all, thank you to all of you for coming to this conference. Enjoy and have a safe journey back home. Dr Samuel Laryea School of Construction Management and Engineering University of Reading, July 2010
Resumo:
The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.
Resumo:
Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.