2 resultados para proposed action
em CentAUR: Central Archive University of Reading - UK
Resumo:
Observation of adverse drug reactions during drug development can cause closure of the whole programme. However, if association between the genotype and the risk of an adverse event is discovered, then it might suffice to exclude patients of certain genotypes from future recruitment. Various sequential and non-sequential procedures are available to identify an association between the whole genome, or at least a portion of it, and the incidence of adverse events. In this paper we start with a suspected association between the genotype and the risk of an adverse event and suppose that the genetic subgroups with elevated risk can be identified. Our focus is determination of whether the patients identified as being at risk should be excluded from further studies of the drug. We propose using a utility function to? determine the appropriate action, taking into account the relative costs of suffering an adverse reaction and of failing to alleviate the patient's disease. Two illustrative examples are presented, one comparing patients who suffer from an adverse event with contemporary patients who do not, and the other making use of a reference control group. We also illustrate two classification methods, LASSO and CART, for identifying patients at risk, but we stress that any appropriate classification method could be used in conjunction with the proposed utility function. Our emphasis is on determining the action to take rather than on providing definitive evidence of an association. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.