223 resultados para projections
em CentAUR: Central Archive University of Reading - UK
Resumo:
Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
Sea level changes resulting from CO2-induced climate changes in ocean density and circulation have been investigated in a series of idealised experiments with the Hadley Centre HadCM3 AOGCM. Changes in the mass of the ocean were not included. In the global mean, salinity changes have a negligible effect compared with the thermal expansion of the ocean. Regionally, sea level changes are projected to deviate greatly from the global mean (standard deviation is 40% of the mean). Changes in surface fluxes of heat, freshwater and wind stress are all found to produce significant and distinct regional sea level changes, wind stress changes being the most important and the cause of several pronounced local features, while heat and freshwater flux changes affect large parts of the North Atlantic and Southern Ocean. Regional change is related mainly to density changes, with a relatively small contribution in mid and high latitudes from change in the barotropic circulation. Regional density change has an important contribution from redistribution of ocean heat content. In general, unlike in the global mean, the regional pattern of sea level change due to density change appears to be influenced almost as much by salinity changes as by temperature changes, often in opposition. Such compensation is particularly marked in the North Atlantic, where it is consistent with recent observed changes. We suggest that density compensation is not a property of climate change specifically, but a general behavior of the ocean.
Resumo:
We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.
Resumo:
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
Resumo:
A unique parameterization of the perspective projections in all whole-numbered dimensions is reported. The algorithm for generating a perspective transformation from parameters and for recovering parameters from a transformation is a modification of the Givens orthogonalization algorithm. The algorithm for recovering a perspective transformation from a perspective projection is a modification of Roberts' classical algorithm. Both algorithms have been implemented in Pop-11 with call-out to the NAG Fortran libraries. Preliminary monte-carlo tests show that the transformation algorithm is highly accurate, but that the projection algorithm cannot recover magnitude and shear parameters accurately. However, there is reason to believe that the projection algorithm might improve significantly with the use of many corresponding points, or with multiple perspective views of an object. Previous parameterizations of the perspective transformations in the computer graphics and computer vision literature are discussed.
Resumo:
A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.
Resumo:
Climate change projections are usually presented as 'snapshots' of change at a particular time in the future. Instead, we consider the key question 'when will specific temperature thresholds will be exceeded?'. Framing the question as "when might something happen (either permanently or temporarily)?" rather than "what might happen?" demonstrates that lowering future emissions will delay the crossing of temperature thresholds and buy valuable time for planning adaptation. For example, in higher greenhouse gas emission scenarios, a global average 2°C warming threshold is likely to be crossed by 2060, whereas in a lower emissions scenario, the crossing of this threshold is delayed up to several decades. On regional scales, however, the 2°C threshold will probably be exceeded over large parts of Eurasia, North Africa and Canada by 2040 if emissions continue to increase- well within the lifetime of many people living now.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.