4 resultados para progenies

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to test whether resistance of clones of Theobroma cacao ( cocoa) varied between isolates of Moniliophthora (formerly Crinipellis) perniciosa, the cause of witches' broom disease. Developing buds of vegetatively propagated T. cacao grown in greenhouses in the UK were inoculated with 16 000 spores of M. perniciosa per meristem in water, under conditions where water condensed on the inoculated shoot for at least 12 h after inoculation. The proportion of successful inoculations varied between clones and was inversely correlated with time to symptom production or broom formation. A specific interaction was demonstrated among three single-spore isolates of M. perniciosa and the clone Scavina 6 (SCA 6) and a variety of susceptible clones. Isolates Castenhal-I and APC3 were equally likely to infect SCA 6 and the other clones, but isolate Gran Couva A9 never infected SCA 6, although it was as virulent on the other clones. The interaction was maintained when the wetness period was extended to 70 h. Offspring of SCA 6 x Amelonado matings were all susceptible to both Castenhal-I and GC-A5, with no evidence of greater variability in susceptibility to GC-A5 than Castanhal-I. This suggests recessive inheritance of a single homozygous factor conferring resistance to GC-A5, from SCA 6. The progenies were slightly more susceptible to Castanhal-I than GC-A5. The implications for managing the disease are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragaria vesca is a short-lived perennial with a seasonal-flowering habit. Seasonality of flowering is widespread in the Rosaceae and is also found in the majority of temperate polycarpic perennials. Genetic analysis has shown that seasonal flowering is controlled by a single gene in F. vesca, the SEASONAL FLOWERING LOCUS (SFL). Here, we report progress towards the marker-assisted selection and positional cloning of SFL, in which three ISSR markers linked to SFL were converted to locus-specific sequence-characterized amplified region (SCAR1–SCAR3) markers to allow large-scale screening of mapping progenies. We believe this is the first study describing the development of SCAR markers from ISSR profiles. The work also provides useful insight into the nature of polymorphisms generated by the ISSR marker system. Our results indicate that the ISSR polymorphisms originally detected were probably caused by point mutations in the positions targeted by primer anchors (causing differential PCR failure), by indels within the amplicon (leading to variation in amplicon size) and by internal sequence differences (leading to variation in DNA folding and so in band mobility). The cause of the original ISSR polymorphism was important in the selection of appropriate strategies for SCAR-marker development. The SCAR markers produced were mapped using a F. vesca f. vesca × F. vesca f. semperflorens testcross population. Marker SCAR2 was inseparable from the SFL, whereas SCAR1 mapped 3.0 cM to the north of the gene and SCAR3 1.7 cM to its south.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheat, although moderately tolerant to salt, can not be cultivated in many areas. However, in the triticeae tribe, some of the wild wheat relatives are highly tolerant, e.g. Thinopyrum bessarabicum, which grows on the sea shore. Eight primary hexaploid tritipyrum lines, amphiploids between Triticum durum and Thinopyrum bessarabicum have been produced which can set seed in at least 250 mM NaCl. These tritipyrums (2n=6x=42, AABBEbEb) due to reasons such as brittle rachis, continuous production of tillers, late maturity, tall stature and meiotic instability will not fulfill the requirements of a successful commercial salt tolerant crop. To overcome such problems the substituted tritipyrum, in which selected Eb chromosomes are replaced by D genome chromosomes of 6x wheat, was produced from 6x tritipyrum x 6x wheat hybrids (F1: 2n=6x=42, AABBDEb) followed by selfing and backcrossing with 6x tritipyrum. The fertile plants among the above progenies were screened by the genomic fluorescent in situ hybridization technique to identify their Eb and D chromosome constitution. This study showed that producing tritiprum with variable numbers of Eb and D genome chromosomes is feasible and that FISH is a useful technique for determining the number of Eb chromosomes present.