7 resultados para productivity index
em CentAUR: Central Archive University of Reading - UK
Resumo:
In Central Brazil, the long-term sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, ‘asset value of cattle (representing cattle ownership)' and ‘present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics, and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple ‘no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil.
Resumo:
In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Sires of seven Bos taurus beef breeds were mated with Bos indicus Boran cows at two sites, one near sea level and the other at about 1000 m altitude, and over three years. Purebred Boran calves provided controls for comparisons between sire breeds for growth to 4 years of age, mortality and carcase characteristics in a range environment where all the animals were kept under a similar management regime. Numerous sire breed x site, sire breed x year of birth and site x year of birth interactions were established. Mortality was high, but there was no significant sire breed effect, although purebred Borans had a higher survival than crossbred calves. There was no significant difference between genotypes in birth weight. Generally, Bos taurus cross steers achieved greater live weight gains and heavier carcase weights at 4 years of age than did purebred Borans. Limousin-cross steers had significantly (p<0.05) less fat in the tenth rib sample joint than any of the other genotypes. A productivity index that combined calf survival and carcase weight indicated that the Chianina crosses were more productive than any other genotype at either site. Purebred Borans were more productive than all the Bos taurus crossbreds with the exception of the Chianina crosses at site 1, but were only superior to the Limousin crosses at site 2, which was at the higher altitude. When lean meat yield was introduced into the productivity index, the Boran purebreds were the least productive at site 2.
Resumo:
Productivity growth is conventionally measured by indices representing discreet approximations of the Divisia TFP index under the assumption that technological change is Hicks-neutral. When this assumption is violated, these indices are no longer meaningful because they conflate the effects of factor accumulation and technological change. We propose a way of adjusting the conventional TFP index that solves this problem. The method adopts a latent variable approach to the measurement of technical change biases that provides a simple means of correcting product and factor shares in the standard Tornqvist-Theil TFP index. An application to UK agriculture over the period 1953-2000 demonstrates that technical progress is strongly biased. The implications of that bias for productivity measurement are shown to be very large, with the conventional TFP index severely underestimating productivity growth. The result is explained primarily by the fact that technological change has favoured the rapidly accumulating factors against labour, the factor leaving the sector. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The terrestrial biosphere is subjected to a wide range of natural climatic oscillations. Best known is the El Niño–southern oscillation (ENSO) that exerts globally extensive impacts on crops and natural vegetation. A 50-year time series of ENSO events has been analysed to determine those geographical areas that are reliably impacted by ENSO events. Most areas are impacted by changes in precipitation; however, the Pacific Northwest is warmed by El Niño events. Vegetation gross primary production (GPP) has been simulated for these areas, and tests well against independent satellite observations of the normalized difference vegetation index. Analyses of selected geographical areas indicate that changes in GPP often lead to significant changes in ecosystem structure and dynamics. The Pacific decadal oscillation (PDO) is another climatic oscillation that originates from the Pacific and exerts global impacts that are rather similar to ENSO events. However, the longer period of the PDO provided two phases in the time series with a cool phase from 1951 to 1976 and a warm phase from 1977 to 2002. It was notable that the cool phase of the PDO acted additively with cool ENSO phases to exacerbate drought in the earlier period for the southwest USA. By contrast in India, the cool phase of the PDO appears to reduce the negative impacts of warm ENSO events on crop production.
Resumo:
In today's global economic conditions, improving the productivity of the construction industry is becoming more pressing than ever. Several factors impact the efficiency of construction operatives, but motivation is among the most important. Since low productivity is one of the significant challenges facing the construction industry in the State of Kuwait, the objective of this case study is to identify, explore, and rank the relative importance of the factors perceived to impact the motivational level of master craftsmen involved in primary construction trades. To achieve this objective, a structured questionnaire survey comprising 23 factors, which were shortlisted based on relevant previous research on motivation, the input of local industry experts, and numerous interviews with skilled operatives, was distributed to a large number of master craftsmen. Using the “Relative Importance Index” technique, the following prominent factors are identified: (1) payment delay; (2) rework; (3) lack of a financial incentive scheme; (4) the extent of change orders during execution; (5) incompetent supervisors; (6) delays in responding to Requests For Information (RFI); (7) overcrowding and operatives interface; (8) unrealistic scheduling and performance expectation; (9) shortage of materials on site; and (10) drawings quality level. The findings can be used to provide industry practitioners with guidance for focusing, acting upon, and controlling the critical factors influencing the performance of master craftsmen, hence, assist in achieving an efficient utilization of the workforce, and a reasonable level of competitiveness and cost effective operation.
Resumo:
Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.