8 resultados para primary science

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Muller's ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Muller's ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Muller's ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. Methodology/Principal Findings To determine whether selection is slowing the effects of Muller's ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13–25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19–34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. Conclusions/Significance A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Muller's ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The school has been identified as a key setting to promote physical activity. The purpose of this study was to evaluate the effect of a classroom-based activity break on in-school step counts of primary school children. Data for 90 children (49 boys, 41 girls, 9.3 ± 1.4 years) from three Irish primary schools is presented. In each school one class was randomly assigned as the intervention group and another as controls. Children's step counts were measured for five consecutive days during school hours at baseline and follow-up. Teachers of the intervention classes led a 10 min activity break in the classroom each day (Bizzy Break!). Mean daily in-school steps for the intervention at baseline and follow-up were 5351 and 5054. Corresponding values for the control group were 5469 and 4246. There was a significant difference in the change in daily steps from baseline to follow-up between groups (p < .05). There was no evidence that girls and boys responded differently to the intervention (p > .05). Children participating in a daily 10 min classroom-based activity break undertake more physical activity during school hours than controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958–2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.