28 resultados para predicted packet padding
em CentAUR: Central Archive University of Reading - UK
Resumo:
Estimates of soil organic carbon (SOC) stocks and changes under different land use systems can help determine vulnerability to land degradation. Such information is important for countries in and areas with high susceptibility to desertification. SOC stocks, and predicted changes between 2000 and 2030, were determined at the national scale for Jordan using The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. For the purpose of this study, Jordan was divided into three natural regions (The Jordan Valley, the Uplands and the Badia) and three developmental regions (North, Middle and South). Based on this division, Jordan was divided into five zones (based on the dominant land use): the Jordan Valley, the North Uplands, the Middle Uplands, the South Uplands and the Badia. This information was merged using GIS, along with a map of rainfall isohyets, to produce a map with 498 polygons. Each of these was given a unique ID, a land management unit identifier and was characterized in terms of its dominant soil type. Historical land use data, current land use and future land use change scenarios were also assembled, forming major inputs of the modelling system. The GEFSOC Modelling System was then run to produce C stocks in Jordan for the years 1990, 2000 and 2030. The results were compared with conventional methods of estimating carbon stocks, such as the mapping based SOTER method. The results of these comparisons showed that the model runs are acceptable, taking into consideration the limited availability of long-term experimental soil data that can be used to validate them. The main findings of this research show that between 2000 and 2030, SOC may increase in heavily used areas under irrigation and will likely decrease in grazed rangelands that cover most of Jordan giving an overall decrease in total SOC over time if the land is indeed used under the estimated forms of land use. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Under the United Nations Framework Convention on Climate Change (UNFCCC), Non-Annex 1 countries such as Kenya are obliged to report green house gas (GHG) emissions from all sources where possible, including those from soils as a result of changes in land use or land management. At present, the convention encourages countries to estimate emissions using the most advanced methods possible, given the country circumstances and resources. Estimates of soil organic carbon (SOC) stocks and changes were made for Kenya using the Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. The tool conducts analysis using three methods: (1) the Century general ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The required datasets included: land use history, monthly mean precipitation, monthly mean minimum and maximum temperatures for all the agro-climatic zones of Kenya and historical vegetation cover. Soil C stocks of 1.4-2.0 Pg (0-20 cm), compared well with a Soil and Terrain (SOTER) based approach that estimated similar to .8-2.0 Pg (0-30 cm). In 1990 48% of the country had SOC stocks of < 18 t C ha(-1) and 20% of the country had SOC stocks of 18-30 t C ha(-1), whereas in 2000 56% of the country had SOC stocks of < 18 t C ha(-1) and 31% of the country had SOC stocks of 18-30 t C ha(-1). Conversion of natural vegetation to annual crops led to the greatest soil C losses. Simulations suggest that soil C losses remain substantial throughout the modelling period of 1990-2030. All three methods involved in the GEFSOC System estimated that there would be a net loss of soil C between 2000 and 2030 in Kenya. The decline was more marked with RothC than with Century or the IPCC method. In non-hydric soils the SOC change rates were more pronounced in high sandy soils compared to high clay soils in most land use systems. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We propose a novel method for scoring the accuracy of protein binding site predictions – the Binding-site Distance Test (BDT) score. Recently, the Matthews Correlation Coefficient (MCC) has been used to evaluate binding site predictions, both by developers of new methods and by the assessors for the community wide prediction experiment – CASP8. Whilst being a rigorous scoring method, the MCC does not take into account the actual 3D location of the predicted residues from the observed binding site. Thus, an incorrectly predicted site that is nevertheless close to the observed binding site will obtain an identical score to the same number of nonbinding residues predicted at random. The MCC is somewhat affected by the subjectivity of determining observed binding residues and the ambiguity of choosing distance cutoffs. By contrast the BDT method produces continuous scores ranging between 0 and 1, relating to the distance between the predicted and observed residues. Residues predicted close to the binding site will score higher than those more distant, providing a better reflection of the true accuracy of predictions. The CASP8 function predictions were evaluated using both the MCC and BDT methods and the scores were compared. The BDT was found to strongly correlate with the MCC scores whilst also being less susceptible to the subjectivity of defining binding residues. We therefore suggest that this new simple score is a potentially more robust method for future evaluations of protein-ligand binding site predictions.
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.
Resumo:
This paper presents in detail a theoretical adaptive model of thermal comfort based on the “Black Box” theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient (λ) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results.
Resumo:
Background: Total enteral nutrition (TEN) within 48 h of admission has recently been shown to be safe and efficacious as part of the management of severe acute pancreatitis. Our aim was to ascertain the safety of immediate TEN in these patients and the effect of TEN on systemic inflammation, psychological state, oxidative stress, plasma glutamine levels and endotoxaemia. Methods: Patients admitted with predicted severe acute pancreatitis (APACHE II score 15) were randomised to total enteral (TEN; n = 8) or total parenteral nutrition (TPN; n = 9). Measurements of systemic inflammation (C-reactive protein), fatigue ( visual analogue scale), oxidative stress ( plasma thiobarbituric acid- reactive substances), plasma glutamine and anti-endotoxin IgG and IgM antibody concentrations were made on admission and repeated on days 3 and 7 thereafter. Clinical progress was monitored using APACHE II score. Organ failure and complications were recorded. Results: All patients tolerated the feeding regime well with few nutrition-related complications. Fatigue improved in both groups but more rapidly in the TEN group. Oxidative stress was high on admission and rose by similar amounts in both groups. Plasma glutamine concentrations did not change significantly in either group. In the TPN group, 3 patients developed respiratory failure and 3 developed non-respiratory single organ failure. There were no such complications in the TEN group. Hospital stay was shorter in the TEN group [ 7 (4-14) vs. 10 (7-26) days; p = 0.05] as was time to passing flatus and time to opening bowels [1 (0-2) vs. 2 (1-5) days; p = 0.01]. The cost of TEN was considerably less than of TPN. Conclusion: Immediate institution of nutritional support in the form of TEN is safe in predicted severe acute pancreatitis. It is as safe and as efficacious as TPN and may be beneficial in the clinical course of this disease. Copyright (C) 2003 S. Karger AG, Basel and IAP.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA., Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance or the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
The results from a range of different signal processing schemes used for the further processing of THz transients are contrasted. The performance of different classifiers after adopting these schemes are also discussed.
Resumo:
Wireless Personal Area Networks (WPANs) are offering high data rates suitable for interconnecting high bandwidth personal consumer devices (Wireless HD streaming, Wireless-USB and Bluetooth EDR). ECMA-368 is the Physical (PHY) and Media Access Control (MAC) backbone of many of these wireless devices. WPAN devices tend to operate in an ad-hoc based network and therefore it is important to successfully latch onto the network and become part of one of the available piconets. This paper presents a new algorithm for detecting the Packet/Fame Sync (PFS) signal in ECMA-368 to identify piconets and aid symbol timing. The algorithm is based on correlating the received PFS symbols with the expected locally stored symbols over the 24 or 12 PFS symbols, but selecting the likely TFC based on the highest statistical mode from the 24 or 12 best correlation results. The results are very favorable showing an improvement margin in the order of 11.5dB in reference sensitivity tests between the required performance using this algorithm and the performance of comparable systems.