18 resultados para population decline

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Grey-necked Picathartes Picathartes oreas, considered 'Vulnerable', is an enigmatic ground-dwelling bird endemic to the central African equatorial rainforest and belongs to a family of only two species. Its distribution extends to the two Endemic Bird Areas within Cameroon (Guinea Congo forest biome and Cameroon mountain arc) and its population is thought to be in decline throughout its range due to increasing habitat fragmentation and disturbance. During March-April 2003 and June and October 2007 we surveyed Grey-necked Picathartes in the north-western region of the Mbam Minkom Mountain Forest. In January-March 2006 we surveyed the entire mountain range and found go breeding and 24 potential breeding sites, mostly located on the western slopes. From the complete survey, we estimated the population at 44 breeding individuals. Populations were highest in the north-west region but had apparently declined from 40 breeding individuals in 2003 to 20 in 2007. This region accounted for 41% of the entire population on the mountain range during the 2006 survey. The Mbam Minkom/Kala Important Bird Area was designated based on the presence of Grey-necked Picathartes but is under high pressure of imminent destruction from agricultural encroachment and illegal timber exploitation. These results have important implications for decision making in delimiting forest boundaries and core areas for protection in the development of management plans. We suggest possible remedial actions, appropriate repeatable methods for future monitoring and opportunities for community involvement in the management and conservation of the site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat-based statistical models relating patterns of presence and absence of species to habitat variables could be useful to resolve conservation-related problems and highlight the causes of population declines. In this paper, we apply such a modelling approach to an endemic amphibian, the Sardinian mountain newt Euproctus platycephalus, considered by IUCN a critically endangered species. Sardinian newts inhabit freshwater habitat in streams, small lakes and pools on the island of Sardinia (Italy). Reported declines of newt populations are not yet supported by quantitative data, however, they are perceived or suspected across the species' historical range. This study represents a first attempt trying to statistically relate habitat characteristics to Sardinian newt occurrence and persistence. Linear regression analysis revealed that newts are more likely to be found in sites with colder water temperature, less riparian vegetation and, marginally, absence of fish. The implications of the results for the conservation of the species are discussed, and suggestions for the short-term management of newt inhabited sites suggested. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyommatus bellargus is a priority species of butterfly in the UK as a result of its scarcity and the rate of population decline over the last few years. In the UK, the species is associated with chalk grassland on hot, south-facing slopes suitable for the growth of the food plant Hippocrepis comosa. Shooting game birds is a popular pastime in the UK. Over 40 million game birds, principally Phasianus colchicus and Alectoris rufa, are bred and released into the countryside each year for shooting interests. There is a concern that the release of such a large number of non-native birds has an adverse effect on native wildlife. A study was carried out over a period of 3 years out to examine whether there was any evidence that A. rufa released into chalk grassland habitat negatively affects populations of P. bellargus. A comparison was made between sites where large numbers of A. rufa were released versus sites where no, or few, birds were released. The study involved the construction of exclosures in these sites to allow an examination of the number of butterflies emerging from H. comosa when the birds were excluded versus when the birds had free range across the area. Where birds were present the on-site vegetation was shorter than where they were absent indicating that the birds were definitely influencing habitat structure. However, the evidence that A. rufa was negatively influencing the number of adult butterflies emerging was not strong, although there was a largely non-significant tendency for higher butterfly emergence when the birds were excluded or absent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nature and extent of pre-Columbian (pre-1492 AD) human impact in Amazonia is a contentious issue. The Bolivian Amazon has yielded some of the most impressive evidence for large and complex pre-Columbian societies in the Amazon basin, yet there remains relatively little data concerning the land use of these societies over time. Palaeoecology, when integrated with archaeological data, has the potential to fill these gaps in our knowledge. We present a 6,000-year record of anthropogenic burning, agriculture and vegetation change, from an oxbow lake located adjacent to a pre-Columbian ring-ditch in north-east Bolivia (13°15’44” S, 63°42’37” W). Human occupation around the lake site is inferred from pollen and phytoliths of maize (Zea mays L.) and macroscopic charcoal evidence of anthropogenic burning. First occupation around the lake was radiocarbon dated to ~2500 years BP. The persistence of maize in the record from ~1850 BP suggests that it was an important crop grown in the ringditch region in pre-Columbian times, and abundant macroscopic charcoal suggests that pre-Columbian land management entailed more extensive burning of the landscape than the slash-and-burn agriculture practised around the site today. The site was occupied continuously until near-modern times, although there is evidence for a decline in agricultural intensity or change in land use strategy, and possible population decline, from ~600-500 BP. The long and continuous occupation, which predates the establishment of rainforest in the region, suggests that pre-Columbian land use may have had a significant influence on ecosystem development at this site over the last ~2000 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projected impacts of climate change on the populations and distributions of species pose a challenge for conservationists. In response, a number of adaptation strategies to enable species to persist in a changing climate have been proposed. Management to maximise the quality of habitat at existing sites may reduce the magnitude or frequency of climate-driven population declines. In addition large-scale management of landscapes could potentially improve the resilience of populations by facilitating inter-population movements. A reduction in the obstacles to species’ range expansion, may also allow species to track changing conditions better through shifts to new locations, either regionally or locally. However, despite a strong theoretical base, there is limited empirical evidence to support these management interventions. This makes it difficult for conservationists to decide on the most appropriate strategy for different circumstances. Here extensive data from long-term monitoring of woodland birds at individual sites are used to examine the two-way interactions between habitat and both weather and population count in the previous year. This tests the extent to which site-scale and landscape-scale habitat attributes may buffer populations against variation in winter weather (a key driver of woodland bird population size) and facilitate subsequent population growth. Our results provide some support for the prediction that landscape-scale attributes (patch isolation and area of woodland habitat) may influence the ability of some woodland bird species to withstand weather-mediated population declines. These effects were most apparent among generalist woodland species. There was also evidence that several, primarily specialist, woodland species are more likely to increase following population decline where there is more woodland at both site and landscape scales. These results provide empirical support for the concept that landscape-scale conservation efforts may make the populations of some woodland bird species more resilient to climate change. However in isolation, management is unlikely to provide a universal benefit to all species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the causal mechanisms promoting group formation in carnivores has been widely investigated, particularly how fitness components affect group formation. Population density may affect the relative benefits of natal philopatry versus dispersal. Density effects on individual behavioral strategies have previously been studied through comparisons of different populations, where differences could be confounded by between-site effects. We used a single population of red foxes (Vulpes vulpes) in the city of Bristol, UK, that underwent a natural perturbation in density to compare key changes in 1) group structure, 2) within-group relatedness, 3) mating system, 4) dispersal, and 5) dominance attainment. At high densities (19.6-27.6 adults km(-2)), group sex ratios were equal and included related and unrelated individuals. At low densities (4.0-5.5 adults km(-2)), groups became female biased and were structured around philopatric females. However, levels of within-group relatedness were unchanged. The genetic mating patterns changed with no instances of multiple-paternity litters and a decline in the frequency of extrapair litters of cubs from <= 77% to <= 38%. However, the number of genetically monogynous groups did not differ between periods. Dispersal was male biased at both high and low densities. At high density, most dominant males in the study groups appeared to have gained dominance after dispersing, but natal philopatry was an equally successful strategy at low density; conversely, most dominant females were philopatric individuals at both high and low densities. These results illustrate how density may alter behavioral strategies such as mating patterns and how this, in turn, alters group structure in a single population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 years, Spanish Atlantic salmon (Salmo salar) populations have been in decline. In order to bolster these populations, rivers were stocked with fish of northern European origin during the period 1974-1996, probably also introducing the furunculosis-inducing pathogen, Aeromonas salmonicida. Here we assess the relative importance of processes influencing mitochondrial (mt)DNA variability in these populations from 1948 to 2002. Genetic material collected over this period from four rivers in northern Spain (Cantabria) was used to detect variability at the mtDNA ND1 gene. Before stocking, a single haplotype was found at high frequency (0.980). Following stocking, haplotype diversity (h) increased in all rivers (mean h before stocking was 0.041, and 0.245 afterwards). These increases were due principally to the dramatic increase in frequency of a previously very low frequency haplotype, reported at higher frequencies in northern European populations proximate to those used to stock Cantabrian rivers. Genetic structuring increased after stocking: among-river differentiation was low before stocking (1950s/1960s Phi(ST) = -0.00296-0.00284), increasing considerably at the height of stocking (1980s Phi(ST) = 0.18932) and decreasing post-stocking (1990s/2002 Phi(ST) = 0.04934-0.03852). Gene flow from stocked fish therefore seems to have had a substantial role in increasing mtDNA variability. Additionally, we found significant differentiation between individuals that had probably died from infectious disease and apparently healthy, angled fish, suggesting a possible role for pathogen-driven selection of mtDNA variation. Our results suggest that stocking with non-native fish may increase genetic diversity in the short term, but may not reverse population declines.