53 resultados para polymorphic membrane protein
em CentAUR: Central Archive University of Reading - UK
Resumo:
BM2 is the fourth integral membrane protein encoded by the influenza B virus genome. It is synthesized late in infection and transported to the plasma membrane from where it is subsequently incorporated into progeny virus particles. It has recently been reported that BM2 has ion channel activity and may be the functional homologue of the influenza A virus M2 protein acting as an ion channel involved in viral entry. Using a reverse genetic approach it was not possible to recover virus which lacked BM2. A recombinant influenza B virus was generated in which the BM2 AUG initiation codon was mutated to GUG. This decreased the efficiency of translation of BM2 protein such that progeny virions contained only 1/8 the amount of BM2 seen in wild-type virus. The reduction in BM2 incorporation resulted in a reduction in infectivity although there was no concomitant decrease in the numbers of virions released from the infected cells. These data imply that the incorporation of sufficient BM2 protein into influenza B virions is required for infectivity of the virus particles. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.
Resumo:
Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.
Resumo:
Current intakes of very long chain omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DNA) are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids too. Very long chain w-3 fatty acids are readily incorporated from capsules into transport, functional, and storage pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, eicosanoid generation, cell signaling and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology, and the way cells and tissues respond to external signals. In most cases, the effects seen are compatible with improvements in disease biomarker profiles or in health-related outcomes. As a result, very long chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long chain omega-3 fatty acids protect against cardiovascular morbidity and mortality, and might be beneficial in rheumatoid arthritis, inflammatory bowel diseases, childhood learning, and behavior, and adult psychiatric and neurodegenerative illnesses. DHA has an important structural role in the eye and brain, and its supply early in life is known to be of vital importance. On the basis of the recognized health improvements brought about by long chain omega-3 fatty acids, recommendations have been made to increase their intake. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 3, May/June 2009, Pages 266-272. E-mail: pcc@soton.ac.uk
Resumo:
Background: The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 similar to 15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A(2A)R) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results: Bioreactor cultures yielded an approximately five times increase in cell density (OD600 similar to 75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A(2A)R, and therefore more suitable for further functional and structural studies. Conclusion: Large-scale expression of the A(2A)R in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.
Resumo:
A polymerase chain reaction (PCR) assay was developed to detect Chlamydia psittaci DNA in faeces and tissue samples from avian species. Primers were designed to amplify a 264 bp product derived from part of the 5' non-translated region and part of the coding region of the ompA gene which encodes the major outer membrane protein. Amplified sequences were confirmed by Southern hybridization using an internal probe. The sensitivity of the combined assay was found to be between 60 to 600 fg of chlamydial DNA (approximately 6 to 60 genome copies). The specificity of the assay was confirmed since PCR product was not obtained from samples containing several serotypes of C. trachomatis, strains of C. pneumoniae, the type strain of C. pecorum, nor from samples containing microorganisms commonly found in the avian gut flora. In this study, 404 avian faeces and 141 avian tissue samples received by the Central Veterinary Laboratory over a 6 month period were analysed by PCR, antigen detection ELISA and where possible, cell culture isolation. PCR performed favourably compared with ELISA and cell culture, or with ELISA alone. The PCR assay was especially suited to the detection of C. psittaci DNA in avian faeces samples. The test was also useful when applied to tissue samples from small contact birds associated with a case of human psittacosis where ELISA results were negative and chlamydial isolation was a less favourable method due to the need for rapid diagnosis.
Resumo:
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfect ants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of map in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.
Resumo:
Chromosomally encoded systems involved in low level resistance of bacteria to different classes of antibiotics (mainly beta-lactams, chloramphenicol, quinolones and tetracycline), disinfectants and in resistance to organic solvents have been the focus of considerable interest in recent years. The multiple antibiotic resistance (mar) locus of Escherichia coli and Salmonella is perhaps the best described system involved in this type of resistance which is induced by MarA, the activator protein encoded by the marRAB locus. The mar-locus is reported to mediate resistance primarily by up-regulating efflux of some antibiotics, disinfectants and organic solvents via the AcrAB-TolC efflux pump and down regulating influx through Outer Membrane Protein F (OmpF). Whilst the level of antibiotic resistance conferred by marRAB is only low level, there are increasing data to suggest that marRAB and related systems are important in clinical antibiotic resistance, possibly as a 'stepping stone' to higher levels of resistance. Other related systems include up-regulation of RobA, SoxS and AcrAB which give rise to a similar resistance phenotype to that conferred by up-regulation of MarA. The aim of this paper is to review the function and significance of the mar-locus and related systems with a particular focus on its implications in veterinary medicine. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.
Resumo:
Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.
Resumo:
The aim of this work was to examine a possible association between resistance of two Escherichia coli strains to high hydrostatic pressure and the susceptibility of their cell membranes to pressure-induced damage. Cells were exposed to pressures between 100 and 700 MPa at room temperature (~20C) in phosphate-buffered-saline. In the more pressure-sensitive strain E. coli 8164, loss of viability occurred at pressures between 100 MPa and 300 MPa and coincided with irreversible loss of membrane integrity as indicated by uptake of propidium iodide (PI) and leakage of protein of molecular mass between 9 and 78 kDa from the cells. Protein release increased to a maximum at 400 MPa then decreased, possibly due to intracellular aggregation at the higher pressures. In the pressure-resistant strain E. coli J1, PI was taken up during pressure treatment but not after decompression indicating that cells were able to reseal their membranes. Loss of viability in strain J1 coincided with the transient loss of membrane integrity between approximately 200 MPa and 600 MPa. In E. coli J1 leakage of protein occurred before loss of viability and the released protein was of low molecular mass, between 8 and 11 kDa and may have been of periplasmic origin. In these two strains differences in pressure resistance appeared to be related to differences in the ability of their membranes to withstand disruption by pressure. However it appears that transient loss of membrane integrity during pressure can lead to cell death irrespective of whether cells can reseal their membranes afterwards.
Resumo:
Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.
Resumo:
Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.