61 resultados para pollen germination
em CentAUR: Central Archive University of Reading - UK
Resumo:
Resilience of rice cropping systems to potential global climate change will partly depend on temperature tolerance of pollen germination (PG) and tube growth (PTG). Germination of pollen of high temperature susceptible Oryza glaberrima Steud. (cv. CG14) and O. sativa L. ssp. indica (cv. IR64) and high temperature tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4°C temperature gradient system. Mean maximum PG was 85% at 27°C with 1488 μm PTG at 25°C. The hypothesis that in each pollen grain, minimum temperature requirements (Tn) and maximum temperature limits (Tx) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50)) was lowest (29.8°C) in IR64 compared with CG14 (34.3°C) and N22 (35.6°C). Standard deviation (sx) of Tx was also low in IR64 (2.3°C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures.
Resumo:
Experiments were conducted over two years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26°C day/night) for five days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages, flowers were most affected during initial green-bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ~28°C and ~32°C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times.
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees. Keywords:badnavirus;CSSV;PCR;pollen;seed transmission;Theobroma cacao
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Recent sedimentological and palynological research on subfossil Holocene banded sediments from the Severn Estuary Levels suggested seasonality of deposition, registered by variations in mineral grain-size and pollen assemblages between different parts of the bands. Here we provide data that strengthen this interpretation from sampling of modern sediments and pollen deposition on an active mudflat and saltmarsh on the margin of the Severn Estuary, and comparison with a vegetation survey and contemporary records of climate, river and tidal regimes. The results of grain-size analysis indicate deposition of comparatively coarse-grained silts during the relatively cool and windy conditions of winter and comparatively fine-grained sediments during relatively warm and calm summer months. Pollen analysis demonstrates the significance of long-term storage of pollen grains and fern spores in the estuarine waterbody, superimposed on which seasonal variations in pollen inputs from local and regional vegetation remain detectable. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.
Resumo:
The Holocene vegetation history of the Arabian Peninsula is poorly understood, with few palaeobotanical studies to date. At Awafi, Ras al-Khaimah, UAE, a 3.3 m lake sediment sequence records the vegetation development for the period 8500 cal. yr BP to similar to3000 cal. yr BP. delta(13)C isotope, pollen and phytolith analyses indicate that C3 Pooid grassland with a strong woody element existed during the early Holocene (between 8500 and 6000 cal. yr BP) and became replaced by mixed C3 and C4 grasses with a strong C4 Panicoid tall grass element between 5900 and 5400 cal. yr BP. An intense, arid event Occurred at 4100 cal. yr BP when the lake desiccated and was infilled by Aeolian sand. From 4100 cal. yr BP the vegetation was dominated by C4 Chloridoid types and Cyperaceae, suggesting an incomplete vegetation cover and Aeolian dune reactivation owing to increased regional aridity. These data outline the ecosystem dynamics and carbon cycling in response to palaeomon-soon and north-westerly variability during the Holocene. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
During the microspore division in Datura innoxia, the mitotic spindle is oriented in planes both perpendicular (PE) and oblique (OB) to the spore wall against which the nucleus is situated. However, irrespective of polarity, the usual type of hemispherical wall is laid down at cytokinesis and isolates the generative cell from the rest of the pollen grain (type A). In PE spores the vegetative nucleus initially occupies a central position in the pollen grain, whereas in OB spores the vegetative nucleus lies at the periphery of the grain close to the generative cell. In anther cultures initiated just before the microspore division is due to take place, no marked change can be observed in either orientation or symmetry of the mitotic spindle when the spores divide. In some, however, cytokinesis is disrupted and deposition of the hemispherical wall arrested. In the absence of a complete wall, differentiation of the generative cell cannot take place and binucleate pollen grains are formed having 2 vegetative-type nuclei (type B). The 2 nuclei in the B pollens are always situated against the pollen-grain wall, suggesting that the disruption phenomenon is related to the OB spores. The incomplete wall always makes contact with the intine on the intine-side of the spindle. Wall material may be represented merely as short stubs projecting out from the intine into the cytoplasm, in which event the 2 nuclei lie close to each other and are separated by only a narrow zone of cytoplasm. In other grains the wall is partially developed between the nuclei and terminates at varying distances from the tonoplast; in these, the nuclei are separated by a wider zone of cytoplasm. The significance of these binucleate grains in pollen embryogenesis is discussed.
Resumo:
In young pollen grains of Datura innoxia, a wall of the usual hemispherical type separates the 2 gametophytic cells initially and, in the electron microscope, appears as an electron-translucent matrix which is contiguous with the intine. Before detachment of the generative cell from the intine, the matrix decreases in thickness and in places is dispersed altogether leaving the plasmalemmae on either side of it in close apposition. A particularly prominent zone, triangular in profile, is left where the wall joins with the intine. After detachment of the cell, remnants of the matrix can be seen distributed irregularly around the cell and it is supposed that these are partly derived from material in the triangular zone as the cell is drawn away from the intine. The wall residues persist throughout the maturation phase of the pollen and are considered to be either callose resulting from incomplete digestion of the initial wall, or some other polysaccharide material which is unevenly laid down along the wall and concentrated at the junction with the intine. In pollen induced into embryogenesis by anther culture, wall material is also distributed irregularly around the detached cell in a series of discrete zones, but these are more extensive than in vivo, closer together and in many instances highly dilated. The wall profiles thus have a beaded appearance, the 'beads' being connected together by short links of the 2 apposed plasmalemmae. The contents of the swollen zones have a similar electron density to that of the matrix in vivo but also show traces of a fibrillar component. It is postulated that this unusual swelling is a prelude to dispersal of the wall by disruption of the plasmalemmal links and to the establishment of cytoplasmic continuity between the 2 cells. The significance of such binucleate pollen grains in the formation of non-haploid embryos is discussed.