12 resultados para pliocene
em CentAUR: Central Archive University of Reading - UK
Resumo:
The nature and magnitude of climatic variability during the period of middle Pliocene warmth (ca 3.29–2.97 Ma) is poorly understood. We present a suite of palaeoclimate modelling experiments incorporating an advanced atmospheric general circulation model (GCM), coupled to a Q-flux ocean model for 3.29, 3.12 and 2.97 Ma BP. Astronomical solutions for the periods in question were derived from the Berger and Loutre BL2 astronomical solution. Boundary conditions, excluding sea surface temperatures (SSTs) which were predicted by the slab-ocean model, were provided from the USGS PRISM2 2°×2° digital data set. The model results indicate that little annual variation (0.5°C) in SSTs, relative to a ‘control’ experiment, occurred during the middle Pliocene in response to the altered orbital configurations. Annual surface air temperatures also displayed little variation. Seasonally, surface air temperatures displayed a trend of cooler temperatures during December, January and February, and warmer temperatures during June, July and August. This pattern is consistent with altered seasonality resulting from the prescribed orbital configurations. Precipitation changes follow the seasonal trend observed for surface air temperature. Compared to present-day, surface wind strength and wind stress over the North Atlantic, North Pacific and Southern Ocean remained greater in each of the Pliocene experiments. This suggests that wind-driven gyral circulation may have been consistently greater during the middle Pliocene. The trend of climatic variability predicted by the GCM for the middle Pliocene accords with geological data. However, it is unclear if the model correctly simulates the magnitude of the variation. This uncertainty is derived from, (a) the relative insensitivity of the GCM to perturbation in the imposed boundary conditions, (b) a lack of detailed time series data concerning changes to terrestrial ice cover and greenhouse gas concentrations for the middle Pliocene and (c) difficulties in representing the effects of ‘climatic history’ in snap-shot GCM experiments.
Resumo:
Previous studies have shown an inverse correlation between zooid size in cheilostome bryozoans and ambient water temperature. This relationship underlies the MART technique which uses intracolonial variation in zooid size to predict mean annual range in temperature experienced by bryozoan colonies during their life. Here we apply the MART technique to study Early and Mid Pliocene bryozoans from Central America (Panama, Costa Rica), the USA (Florida, South Carolina, North Carolina, Virginia) and the UK (Suffolk) to reconstruct palaeoseasonality across a range of latitudes for the North Atlantic during the Pliocene Epoch. Compared to the present-day, our analyses suggest greater seasonality (ca 4.5 degrees C) in the southern Caribbean at the time of Cayo Agua Formation deposition (ca 4.25 Ma), in keeping with inferred upwelling prior to the closure of the isthmian barrier at 2.7 Ma. Bryozoans also indicate seasonal upwelling on the Gulf Coast of Florida in a similar manner to the present-day. Because upwelling can be highly localised and prone to spatial and temporal variation in the Gulf of Mexico today, it contributes little to a broad understanding of Pliocene North Atlantic waters. However, MART estimates for the coastal plain region indicate a general reduction in the annual range in temperature relative to the present, suggesting that the colder surface waters that today reach south to Cape Hatteras had less influence in Early to Mid Pliocene times. These results, along with evidence from other proxies, strongly support reduced seasonality and warmer conditions along the eastern seaboard of the USA in the Early to Mid Pliocene. Finally, the MART estimates amongst Coralline Crag localities provide evidence for an increased annual range in temperature in the southern North Sea than at present. Our study shows that bryozoan MART estimates provide a powerful, independent proxy for palaeoseasonality and is the first to demonstrate that the MART technique can be applied to infer palaeoclimates across a wide range of latitudes focusing on a variety of geological formations and geographical regions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Southern Tunisia contains one of the most extensive gypsum accumulations in Africa comprising Triassic, Cretaceous, Eocene and Mio-Pliocene marine evaporites, spring deposits, playa sediments, aeolian sands and gypsum crusts. Sulphur isotope analysis (delta(34)S) of bedrock samples, groundwater, playa brines, playa sediments, and gypsiferous crusts provides insight into the sources of gypsum in the region and sheds light on the processes that lead to gypsum crust formation. Results Suggest that recycling of marine gypsum is the most likely source of the sulphate in the groundwater, playa sediments and crusts. The low PS values found in Eocene and Mio-Pliocene samples suggest that this recycling has been going on for millions of years. Though bedrock appears to be the ultimate source of the gypsum in the crusts, transport of this sulphate to playas, concentration therein, and subsequent dispersal across the landscape by aeolian processes provides the most likely pathway for surticial gypsum crust formation. Comparison of these results with those from Australia, Chile and Namibia suggests that, although the source of the sulphur varies from region to region, the processes of surficial crust formation appear to be similar. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
We have integrated information on topography, geology and geomorphology with the results of targeted fieldwork in order to develop a chronology for the development of Lake Megafazzan, a giant lake that has periodically existed in the Fazzan Basin since the late Miocene. The development of the basin can be best understood by considering the main geological and geomorphological events that occurred thought Libya during this period and thus an overview of the palaeohydrology of all Libya is also presented. The origin of the Fazzan Basin appears to lie in the Late Miocene. At this time Libya was dominated by two large rivers systems that flowed into the Mediterranean Sea, the Sahabi River draining central and eastern Libya and the Wadi Nashu River draining much of western Libya. As the Miocene progressed the region become increasingly affected by volcanic activity on its northern and eastern margin that appears to have blocked the River Nashu in Late Miocene or early Messinian times forming a sizeable closed basin in the Fazzan within which proto-Lake Megafazzan would have developed during humid periods. The fall in base level associated with the Messinian desiccation of the Mediterranean Sea promoted down-cutting and extension of river systems throughout much of Libya. To the south of the proto Fazzan Basin the Sahabi River tributary know as Wadi Barjuj appears to have expanded its headwaters westwards. The channel now terminates at Al Haruj al Aswad. We interpret this as a suggestion that Wadi Barjuj was blocked by the progressive development of Al Haruj al Aswad. K/Ar dating of lava flows suggests that this occurred between 4 and 2 Ma. This event would have increased the size of the closed basin in the Fazzan by about half, producing a catchment close to its current size (-350,000 km(2)). The Fazzan Basin contains a wealth of Pleistocene to recent palaeolake sediment outcrops and shorelines. Dating of these features demonstrates evidence of lacustrine conditions during numerous interglacials spanning a period greater than 420 ka. The middle to late Pleistocene interglacials were humid enough to produce a giant lake of about 135,000 km(2) that we have called Lake Megafazzan. Later lake phases were smaller, the interglacials less humid, developing lakes of a few thousand square kilometres. In parallel with these palaeohydrological developments in the Fazzan Basin, change was occurring in other parts of Libya. The Lower Pliocene sea level rise caused sediments to infill much of the Messinian channel system. As this was occurring, subsidence in the Al Kufrah Basin caused expansion of the Al Kufrah River system at the expense of the River Sahabi. By the Pleistocene, the Al Kufrah River dominated the palaeohydrology of eastern Libya and had developed a very large inland delta in its northern reaches that exhibited a complex distributary channel network which at times fed substantial lakes in the Sirt Basin. At this time Libya was a veritable lake district during humid periods with about 10% of the country underwater. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The hypothesis that the elements of the modern species-rich flora of the Cape Floristic Region (CFR), South Africa, originated more or less simultaneously at the Miocene/Pliocene boundary, in response to the development of a mediterranean climate, has been challenged by numerous molecular dating estimates of Cape floral clades. These studies reveal a more gradual emergence, with the oldest clades originating in the Eocene, but others appearing later, some as recently as the Pliocene. That there are factors which might affect the dates recovered, such as choice of calibration point, analysis method, sampling density and the delimitation of Cape floral clades, suggests a need for further critical evaluation of the age estimates presented to date. In this study, the dates of origin of two Cape floral clades (the legume Crotalarieae p.p. and Podalyrieae) are estimated, constrained by a shared calibration point in a single analysis using an rDNA ITS phylogeny in which 633 taxa are sampled. The results indicate that these two clades arose contemporaneously 44-46 mya, not at the Miocene/Pliocene boundary as had been previously supposed. The contemporaneous origin of these Cape floral clades suggests that additional more inclusive analyses are needed before rejecting the hypothesis that a. single environmental trigger explains the establishment of Cape floral clades. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Phylogenetic hypotheses for the largely South African genus Pelargonium L'Hér. (Geraniaceae) were derived based on DNA sequence data from nuclear, chloroplast and mitochondrial encoded regions. The datasets were unequally represented and comprised cpDNA trnL-F sequences for 152 taxa, nrDNA ITS sequences for 55 taxa, and mtDNA nad1 b/c exons for 51 taxa. Phylogenetic hypotheses derived from the separate three datasets were overall congruent. A single hypothesis synthesising the information in the three datasets was constructed following a total evidence approach and implementing dataset specific stepmatrices in order to correct for substitution biases. Pelargonium was found to consist of five main clades, some with contrasting evolutionary patterns with respect to biogeographic distributions, dispersal capacity, pollination biology and karyological diversification. The five main clades are structured in two (subgeneric) clades that correlate with chromosome size. One of these clades includes a "winter rainfall clade" containing more than 70% of all currently described Pelargonium species, and all restricted to the South African Cape winter rainfall region. Apart from (woody) shrubs and small herbaceous rosette subshrubs, this clade comprises a large "xerophytic" clade including geophytes, stem and leaf succulents, harbouring in total almost half of the genus. This clade is considered to be the result of in situ proliferation, possibly in response to late-Miocene and Pliocene aridification events. Nested within it is a radiation comprising c. 80 species from the geophytic Pelargonium section Hoarea, all characterised by the possession of (a series of) tunicate tubers.
Resumo:
Uncertainties in sea-level projections for the 21st century have focused ice sheet modelling efforts to include the processes that are thought to be contributing to the recently observed rapid changes at ice sheet margins. This effort is still in its infancy, however, leaving us unable to make reliable predictions of ice sheet responses to a warming climate if such glacier accelerations were to increase in size and frequency. The geological record, however, has long identified examples of nonlinear ice sheet response to climate forcing (Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–239, late Pliocene to latest Pleistocene. Geological Society of America Memoirs145: 449–464; Fairbanks RG. 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature342: 637–642; Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F. 1996. Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature382: 241–244), thus suggesting an alternative strategy for constraining the rate and magnitude of sea-level change that we might expect by the end of this century. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
This paper reports the results of fieldwork conducted in the 2010 and 2011 DMP field seasons and of analysis of samples collected during these and previous years. Research has involved 1) studying palaeolake sediment outcrops, 2) using ground penetrating radar (GPR) to determine their extent under the Dahān Ubārī, and 3) coring palaeolakes in order to determine their palaeoenvironmental records. Research on these samples is continuing but some initial findings are discussed in this paper. The most extensive palaeolake sediments are found within the al-Mahruqah Formation and were deposited by a giant lake system that developed in the Fazzān Basin during past humid periods. Stratigraphic analysis of Lake Megafazzān sediments suggests two different sedimentary successions, a lake margin succession distinctive for its lacustrine and palaeosol carbonates, and a clastic-dominated, intensely rootleted, basin-centre succession which has terrestrial intervals (aeolian and palaeosols) as well as in the upper parts lacustrine limestones. Both basin margin and basin centre successions are underlain by fluvial deposits. Magnetostratigraphy suggests that the formation may be as old as the mid-Pliocene. After the Lake Megafazzān phase, smaller palaeolakes developed within the basin during subsequent humid periods. One of the largest is found in the Wādī al-Hayāt in the area between Jarma and Ubārī. Similar deposits further west along the Wādī at progressively higher altitudes are interpreted as small lakes and marshes fed by springs issuing from aquifers at the base of the escarpment, last replenished during the Holocene humid phase. Dating of sediments suggests that this was between c. 11 and c. 8 ka. The Wādī ash-Shāţī palaeolake core also provides a Holocene palaeoclimate record that paints a slightly different picture, indicating lake conditions until around 7 ka, whereupon it started oscillating until around 5.5 ka when sedimentation terminates. The reasons for the differences in these records are discussed.
Resumo:
Phylogenetic analysis of nrDNA ITS and trnL (UAA) 5′ exon-trnF (GAA) chloroplast DNA sequences from 17 species ofPelargonium sect.Peristera, together with nine putative outgroups, suggests paraphyly for the section and a close relationship between the highly disjunct South African and Australian species of sect.Peristera. Representatives fromPelargonium sectt.Reniformia, Ligularia s. l. andIsopetalum (the St. Helena endemicP. cotyledonis) appear to be nested within thePeristera clade. The close relationship between the South African and AustralianPeristera is interpreted as being caused by long-range dispersal to Australia, probably as recent as the late Pliocene.
Resumo:
Based on the geological evidence that the northern Tibetan Plateau (NTP) had an uplift of a finite magnitude since the Miocene and the major Asian inland deserts formed in the early Pliocene, a regional climate model (RegCM4.1) with a horizontal resolution of 50 km was used to explore the effects of the NTP uplift and the related aridification of inland Asia on regional climate. We designed three numerical experiments including the control experiment representing the present-day condition, the high-mountain experiment representing the early Pliocene condition with uplifted NTP but absence of the Asian inland deserts, and the low-mountain experiment representing the mid-Miocene condition with reduced topography in the NTP (by as much as 2400 m) and also absence of the deserts. Our simulation results indicated that the NTP uplift caused significant reductions in annual precipitation in a broad region of inland Asia north of the Tibetan Plateau (TP) mainly due to the enhanced rain shadow effect of the mountains and changes in the regional circulations. However, four mountainous regions located in the uplift showed significant increases in precipitation, stretching from the Pamir Plateau in the west to the Qilian Mountains in the east. These mountainous areas also experienced different changes in the rainfall seasonality with the greatest increases occurring during the respective rainy seasons, predominantly resulted from the enhanced orographically forced upwind ascents. The appearance of the major deserts in the inland Asia further reduced precipitation in the region and led to increased dust emission and deposition fluxes, while the spatial patterns of dust deposition were also changed, not only in the regions of uplift-impacted topography, but also in the downwind regions. One major contribution from this study is the comparison of the simulation results with 11 existing geological records representing the moisture conditions from Miocene to Pliocene. The comparisons revealed good matches between the simulation results and the published geological records. Therefore, we conclude that the NTP uplift and the related formation of the major deserts played a controlling role in the evolution of regional climatic conditions in a broad region in inland Asia since the Miocene.