44 resultados para plasmatic urea
em CentAUR: Central Archive University of Reading - UK
Resumo:
The effect of presubmergence and green manuring on various processes involved in [N-15]-urea transformations were studied in a growth chamber after [N-15]-urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+-N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+-N from applied fertilizer, it maintained higher NH4+-N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9% (T-1), 23.9% (T-2), and 36.4% (T-3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.
Resumo:
Fibre, crude protein and tannin concentrations were measured in browse species from the semi-arid region of Northeast Brazil during the dry and wet seasons. The effects of oven-, sun- and shade-drying and of urea treatment were also determined. Crude protein (CP) content varied from 103 to 161 g/kg dry matter (DM) and the browses had similar CP content in the two seasons (during 2002) (102-161 and 107-153 g/kg DM in the wet and dry seasons, respectively). Total tannin concentrations ranged from 13 to 201 g/kg DM amongst the browses and were higher in the dry season. A 30-d treatment with urea reduced extractable tannins significantly (P < 0.05). The urea treatment was also most effective at reducing the in vitro effects of tannins compared to the other drying treatments. This was demonstrated by measuring the effect of polyethylene glycol (PEG) on gas production. Addition of PEG increased gas production of oven- (81.4%), sun- (78.5%) and shade-dried (76.7%) samples much more compared to urea treated samples (10.9%). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [ MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R-2 = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R-2 = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R-2 = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R-2 = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.
Resumo:
Urea forms a 1:1 solvate with N,N-dimethylacetamide (DMA) [systematic name: diaminomethanal- N,N-dimethylacetamide (1/1), C4H9NO center dot CH4N2O] with both molecules positioned on a twofold axis, giving rise to rotational disorder of the DMA molecule. The molecules display a layered structure in which urea molecules form hydrogen-bonded ribbons bounded by molecules of solvent.
Resumo:
PSNCBAM-1 has recently been described as a cannabinoid CB1 receptor allosteric antagonist associated with hypophagic effects in vivo; however, PSNCBAM-1 effects on CB1 ligand-mediated modulation of neuronal excitability remain unknown. Here, we investigate PSNCBAM-1 actions on CB1 receptor-stimulated [35S]GTPγS binding in cerebellar membranes and on CB1 ligand modulation of presynaptic CB1 receptors at inhibitory interneurone-Purkinje cell (IN-PC) synapses in the cerebellum using whole-cell electrophysiology. PSNCBAM-1 caused non-competitive antagonism in [35S]GTPγS binding studies, with higher potency against the CB receptor agonist CP55940 than for WIN55,212-2 (WIN55). In electrophysiological studies, WIN55 and CP55940 reduced miniature inhibitory postsynaptic currents (mIPSCs) frequency, but not amplitude. PSNCBAM-1 application alone had no effect on mIPSCs; however, PSNCBAM-1 pre-treatment revealed agonist-dependent functional antagonism, abolishing CP55940-induced reductions in mIPSC frequency, but having no clear effect on WIN55 actions. The CB1 antagonist/inverse agonist AM251 increased mIPSC frequency beyond control, this effect was reversed by PSNCBAM-1. PSNCBAM-1 pre-treatment also attenuated AM251 effects. Thus, PSNCBAM-1 reduced CB1 receptor ligand functional efficacy in the cerebellum. The differential effect of PSNCBAM-1 on CP55940 versus WIN55 actions in [35S]GTPγS binding and electrophysiological studies and the attenuation of AM251 effects are consistent with the ligand-dependency associated with allosteric modulation. These data provide the first description of functional PSNCBAM-1 allosteric antagonist effects on neuronal excitability in the mammalian CNS. PSNCBAM-1 allosteric antagonism may provide viable therapeutic alternatives to orthosteric CB1 antagonists/inverse agonists in the treatment of CNS disease.
Resumo:
A series of aromatic ureas have been synthesised and found to exhibit strong gelation or even supergelation characteristics in organic solvents to afford colourless or translucent gel materials. The synthesis of these materials, assessment of their gelation characteristics and rheological properties are reported in this paper.
Resumo:
Sustaining soil fertility is essential to the prosperity of many households in the mid-hills of Nepal, but there are concerns that the breakdown of the traditional linkages between forest, livestock, and cropping systems is adversely affecting fertility. This study used triangulated data from surveys of households, discussion groups, and key informants in 16 wards in eastern and western Nepal to determine the existing practices for soil fertility management, the extent of such practices, and the perception of the direction of changes in soil fertility. The two principal practices for maintaining soil fertility were the application of farmyard manure (FYM) and of chemical fertilizer (mainly urea and diammonium phosphate). Green manuring, in-situ manuring, slicing terrace risers, and burning plant residues are rarely practiced. FYM usage was variable with more generally applied to khet land (average 6053 kg fresh weight manure ha(-1)) than to bari land (average 4185 kg fresh weight manure ha-1) with manure from goats and poultry preferred above that from cows and buffaloes. Almost all households (98%) apply urea to khet land and 87% to bari land, with 45% applying diammonium phosphate to both types of land. Application rates and timings of applications varied considerably both within and between wards suggesting poor knowledge transfer between the research and farming communities. The benefits of chemical fertilizers in terms of ease of application and transportation in comparison with FYM, were perceived to outweigh the widely reported detrimental hardening of soil associated with their continued usage. Among key informants, FYM applied in conjunction with chemical fertilizer was the most popular amendment, with FYM alone preferred more than chemical fertilizer alone - probably because of the latter's long-term detrimental effects. Key informant and householder surveys differed in their perception of fertility changes in the last decade probably because of differences in age and site-specific knowledge. All key informants felt that fertility had declined but among households, only about 40% perceived a decline with the remainder about evenly divided between no change and an increase. Householders with small landholdings (< 0.5 ha) were more likely to perceive increasing soil fertility while those with larger landholdings (> 2 ha) were more likely to perceive declining fertility. Perceived changes in soil fertility were not related to food self-sufficiency. The reasons for the slow spread of new technologies within wards and the poor understanding of optimal use of chemical fertilizers in conjunction with improved quality FYM may repay further investigation in terms of sustaining soil fertility in this region.
Resumo:
We explore the role of crystallinity and inter- or intramolecular forces in chitosan for its solubility in water and demonstrate the expansion of its solubility to a wider pH range. Due to its semicrystalline nature, derived mainly from inter- and intramolecular hydrogen bonds, chitosan is water-soluble only at pH < 6. In acidic conditions, its amino groups can be partially protonated resulting in repulsion between positively charged macrochains, thereby allowing diffusion of water molecules and subsequent solvation of macromolecules. We show that chemical disruption of chitosan crystallinity by partial re-acetylation or physical disruption caused by the addition of urea and guanidine hydrochloride broadens the pH-solubility range for this biopolymer.
Resumo:
Chitosan is a biocompatible and biodegradable amino polysaccharide, which is soluble in aqueous solutions at pH < 6.5. It has been widely used for developing drug delivery systems because of its excellent mucoadhesive properties. Although many studies report on chitosan being mucoadhesive, the nature of interactions between chitosan and mucin remains poorly defined. Here, we have examined the role of primary amino groups and the role of electrostatic attraction, hydrogen bonding, and hydrophobic effects on aggregation of gastric mucin in the presence of chitosan. Reducing the number of amino groups through their half acetylation results in expansion of chitosan’s pH-solubility window up to pH 7.4 but also reduces its capacity to aggregate mucin. We demonstrated that electrostatic attraction forces between chitosan and gastric mucin can be suppressed in the presence of 0.2 mol/L sodium chloride; however, this does not prevent the aggregation of mucin particles in the presence of this biopolymer. The presence of 8 mol/L urea or 10% v/v ethanol in solutions also affects mucin aggregation in the presence of chitosan, demonstrating the role of hydrogen bonding and hydrophobic effects, respectively, in mucoadhesion.
Resumo:
A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5.5, 7.3 and 8.3 kg/day, respectively. This was followed by mustard oil cake with 5.1, 6.5 and 7.6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6.6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6.7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4.3, 4.9 and 5.5 and 4.5, 5.3 and 6.1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5.1, 6.7 and 9.0 kg/day, respectively.
Resumo:
The impact of environment on the germination biology of Striga hermonthica was studied in the laboratory by conditioning seeds at various water potentials and urea concentrations at 17.5 to 37.5°C for up to 133 days. The experimental results presented in this research are related to the effects of temperature, water potential and urea nitrogen concentration during conditioning on subsequent germination percentage of S. hermonthica. Maximum germination in S. hermonthica seeds was observed at conditioning temperatures of 20 to 25°C within the range investigated of 17.5 to 37.5°C. Water stress and also urea during conditioning suppressed maximum germination. However, the conditioning temperature ranges at which maximum germination percentages occur vary with water stress and also urea concentration. In the presence of a high concentration of urea (3.16 mM), temperatures required for maximum germination narrowed to between 17.5 to 20°C. The optimum period of conditioning decreased with increase in water stress and also urea concentration similar to previous reports. The implications of these findings on Striga hermonthica field infestations have been investigated and being reported in another paper. Germination was greatly suppressed by conditioning environments including 3.16 mM urea and at 37.5°C. At the high concentration of 3.16 mM, temperatures required for maximum germination narrowed to between 17.5 and 20°C. Optimum conditioning period decreased with water stress and with increase in urea concentration.
Resumo:
The impact of environment on the germination biology of the parasite was studied in the laboratory with seeds conditioned at various water potentials, urea concentrations and at 17.5 to 37.5°C for up to 133 days. Maximum germination was observed at 20 to 25°C. Water stress and urea suppressed maximum germination. The final percentage germination response to period of conditioning showed a non-linear relationship and suggests the release of seeds from dormancy during the initial period and later on dormancy induction. Germination percentage increased with increase in conditioning period to a threshold and remained stable for variable periods followed by a decline with further extension of conditioning time. The decline in germination finally terminated in zero germination in most treatments before the end of experimentation. The investigated factors of temperature, water potential and urea showed clear effects on the expression of dormancy pattern of the parasite. The effects of water potential and urea were viewed as modifying a primary response of seeds to temperature during conditioning. The changes in germinability potential during conditioning were consistent with the hypothesis that dormancy periods are normally distributed within seed populations and that loss of primary dormancy precedes induction of secondary dormancy. Hence an additive mathematical model of loss of primary dormancy and induction of secondary as affected by environment was developed as: G = {[Φ-1 (Kp+ (po+pnN+pwW) (T-Tb) t)]-[Φ-1 (Ks+ ((swW+sa)+sorT)t)]}[Φ-1(aT2+bT+c+cwW)].
Resumo:
A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.