53 resultados para plants seed emergency and growth tests
em CentAUR: Central Archive University of Reading - UK
Resumo:
Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.
Resumo:
Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.
Resumo:
A fast neutron-mutagenized population of Arabidopsis ( Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt ( hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein ( At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, Pro(PGAZAT):beta-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using Pro(HWS):beta-glucuronidase or Pro(HWS):green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro(35S):HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.
Resumo:
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.
Resumo:
Background and Aims: Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods: Phenology, seed mass, moisture content, and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and at several temperature regimes after shedding. Key Results: Seeds were shed at high moisture content (> 59%) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20C in G. nivalis and 15C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48%, respectively, after 700 d. Conclusions: Seeds of G. nivalis and N. pseudonarcissus seeds were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable (0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions.
Resumo:
Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.
Resumo:
Oral nutrition supplements (ONS) are routinely prescribed to those with, or at risk of, malnutrition. Previous research identified poor compliance due to taste and sweetness. This paper investigates taste and hedonic liking of ONS, of varying sweetness and metallic levels, over consumption volume; an important consideration as patients are prescribed large volumes of ONS daily. A sequential descriptive profile was developed to determine the perception of sensory attributes over repeat consumption of ONS. Changes in liking of ONS following repeat consumption were characterised by a boredom test. Certain flavour (metallic taste, soya milk flavour) and mouthfeel (mouthdrying, mouthcoating) attributes built up over increased consumption volume (p 0.002). Hedonic liking data from two cohorts, healthy older volunteers (n = 32, median age 73) and patients (n = 28, median age 85), suggested such build-up was disliked. Efforts made to improve the palatability of ONS must take account of the build up of taste and mouthfeel characteristics over increased consumption volume.
Resumo:
Improved upland rice cultivars introduced in Volta Region, Ghana, have been perceived to store poorly compared to farmers' traditional cultivars. A survey was conducted in 2003 in the Hohoc district of this region, where a participatory Varietal Selection programme had started in 1997, to gain insight into fanners' seed production and storage practices that are likely to affect seed quality in storage. Farmers rated keeping quality (p < 0.001), tolerance to storage pests (p < 0.001), seed quality (p < 0.001) and establishment of their local cultivars Kawomo, Viono and Wuwulili as much better than the improved cultivar IDSA 85. Initial seed moisture content ranged from 12.8 to 18% and germination from 0 to 82%. There was a significant relationship between seed moisture content and duration of drying prior to storage (p < 0.001) and storage method (p = 0.015). Germination loss in storage was rapid at high moisture content and slow at low moisture content. Between 60 and 80% of seeds germinated after six Months storage at 12.8% moisture content. The viability equation predicted accurately germination of farmer-saved seed stored under ambient temperature in Ghana. Except for the japonica rice cultivar WAB 126-18-HB, the traditional cultivars Kawomo, Viono and Wuwulili survived better in storage than improved cultivars. There is a need to improve seed quality of improved cultivars if farmers are to benefit from their higher yields and grain quality and to improve storage practices.
Resumo:
Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.