54 resultados para physically based modeling
em CentAUR: Central Archive University of Reading - UK
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.
Resumo:
This study puts forward a method to model and simulate the complex system of hospital on the basis of multi-agent technology. The formation of the agents of hospitals with intelligent and coordinative characteristics was designed, the message object was defined, and the model operating mechanism of autonomous activities and coordination mechanism was also designed. In addition, the Ontology library and Norm library etc. were introduced using semiotic method and theory, to enlarge the method of system modelling. Swarm was used to develop the multi-agent based simulation system, which is favorable for making guidelines for hospital's improving it's organization and management, optimizing the working procedure, improving the quality of medical care as well as reducing medical charge costs.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.
Resumo:
Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow-soil vegetation-atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r(2) = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt-freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
The goal of the Chemistry‐Climate Model Validation (CCMVal) activity is to improve understanding of chemistry‐climate models (CCMs) through process‐oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozonedepleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal‐2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry‐climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere‐stratosphere chemistry, and non‐orographic gravity‐wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.
Resumo:
Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors.
Resumo:
Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.
Resumo:
In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.