122 resultados para phylogeography, consensus approach, ensemble modeling, Pleistocene, ENM, ecological niche modeling

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of an organism's niche is central to ecological theory, but an operational definition is needed that allows both its experimental delineation and interpretation of field distributions of the species. Here we use population growth rate (hereafter, pgr) to de. ne the niche as the set of points in niche space where pgr. 0. If there are just two axes to the niche space, their relationship to pgr can be pictured as a contour map in which pgr varies along the axes in the same way that the height of land above sea level varies with latitude and longitude. In laboratory experiments we measured the pgr of Daphnia magna over a grid of values of pH and Ca2+, and so defined its "laboratory niche'' in pH-Ca2+ space. The position of the laboratory niche boundary suggests that population persistence is only possible above 0.5 mg Ca2+/L and between pH 5.75 and pH 9, though more Ca2+ is needed at lower pH values. To see how well the measured niche predicts the field distribution of D. magna, we examined relevant field data from 422 sites in England and Wales. Of the 58 colonized water bodies, 56 lay within the laboratory niche. Very few of the sites near the niche boundary were colonized, probably because pgr there is so low that populations are vulnerable to extinction by other factors. Our study shows how the niche can be quantified and used to predict field distributions successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodiophora brassicae Wor. is viewed in this article from the standpoint of a highly evolved and successful organism, well fitted for the ecological niche that it occupies. Physical, chemical, and biological components of the soil environment are discussed in relation to their effects on the survival, growth, and reproduction of this microbe. It is evident that P. brassicae is well equipped by virtue of its robust resting spores for survival through many seasonal cycles. Germination is probably triggered as a result of signals initiated by root exudates. The resultant motile zoospore moves rapidly to the root hair surface and penetration and colonization follow. The short period between germination and penetration is one of greatest vulnerability for P. brassicae. In this phase survival is affected at the very least by soil texture and structure; its moisture; pH; calcium, boron, and nitrogen content; and the presence of active microbial antagonists. These factors influence the inoculum potential (sensu Garrett, 1956) and its viability and invasive capacity. There is evidence that these effects may also influence differentially the survival of some physiologic races of P. brassicae. Considering the interaction of P. brassicae with the soil environment from the perspective of its biological fitness is an unusual approach; most authors consider only the opportunities to destroy this organism. The approach adopted here is borne of several decades spent studying P. brassicae and the respect that has been engendered for it as a biological entity. This review stops at the point of penetration, although some of the implications of the environment for successful colonization are included because they form a continuum. Interactions with the molecular and biochemical cellular environment are considered in other sections in this special edition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caughley's contributions to single-species population ecology are here discussed in the light of some of the ideas and studies his work elicited, with particular reference to influences on my own work and that of my collaborators. Major themes are the manner and extent of population regulation; the alternate perspectives on population regulation that are obtained by density-dependence analyses and mechanistic analyses in terms of food availability and other causal factors; and ways in which mechanistic analyses can be elaborated to characterise a species' ecological niche and relate it to the species' geographic range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Crusades in the Near East, eastern Baltic and Iberian Peninsula (in the context of the Reconquest/reconquista) were accompanied by processes of colonisation, characterising the expansion of medieval Europe and resulting in the creation of frontier societies at the fringes of Christendom. Colonisation was closely associated with — indeed, depended on — the exploitation of local environments, but this dimension is largely missing from studies of the crusading frontiers. This paper, the product of a European Science Foundation Exploratory Workshop on 'The Ecology of Crusading' in 2009, surveys the potential for investigating the environmental impact of the crusading movement in all three frontier regions. It considers a diverse range of archaeological, palaeoenvironmental and written sources, with the aim of situating the societies created by the Crusades within the context of medieval colonisation and human ecological niche construction. It demonstrates that an abundant range of data exists for developing this largely neglected and disparately studied aspect of medieval frontier societies into a significant research programme.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modeling Study was carried out into pea-barley intercropping in northern Europe. The two objectives were (a) to compare pea-barley intercropping to sole cropping in terms of grain and nitrogen yield amounts and stability, and (b) to explore options for managing pea-barley intercropping systems in order to maximize the biomass produced and the grain and nitrogen yields according to the available resources, such as light, water and nitrogen. The study consisted of simulations taking into account soil and weather variability among three sites located in northern European Countries (Denmark, United Kingdom and France), and using 10 years of weather records. A preliminary stage evaluated the STICS intercrop model's ability to predict grain and nitrogen yields of the two species, using a 2-year dataset from trials conducted at the three sites. The work was carried out in two phases, (a) the model was run to investigate the potentialities of intercrops as compared to sole crops, and (b) the model was run to explore options for managing pea-barley intercropping, asking the following three questions: (i) in order to increase light capture, Would it be worth delaying the sowing dates of one species? (ii) How to manage sowing density and seed proportion of each species in the intercrop to improve total grain yield and N use efficiency? (iii) How to optimize the use of nitrogen resources by choosing the most suitable preceding crop and/or the most appropriate soil? It was found that (1) intercropping made better use of environmental resources as regards yield amount and stability than sole cropping, with a noticeable site effect, (2) pea growth in intercrops was strongly linked to soil moisture, and barley yield was determined by nitrogen uptake and light interception due to its height relative to pea, (3) sowing barley before pea led to a relative grain yield reduction averaged over all three sites, but sowing strategy must be adapted to the location, being dependent on temperature and thus latitude, (4) density and species proportions had a small effect on total grain yield, underlining the interspecific offset in the use of environmental growth resources which led to similar total grain yields whatever the pea-barley design, and (5) long-term strategies including mineralization management through organic residue supply and rotation management were very valuable, always favoring intercrop total grain yield and N accumulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two models for predicting Septoria tritici on winter wheat (cv. Ri-band) were developed using a program based on an iterative search of correlations between disease severity and weather. Data from four consecutive cropping seasons (1993/94 until 1996/97) at nine sites throughout England were used. A qualitative model predicted the presence or absence of Septoria tritici (at a 5% severity threshold within the top three leaf layers) using winter temperature (January/February) and wind speed to about the first node detectable growth stage. For sites above the disease threshold, a quantitative model predicted severity of Septoria tritici using rainfall during stern elongation. A test statistic was derived to test the validity of the iterative search used to obtain both models. This statistic was used in combination with bootstrap analyses in which the search program was rerun using weather data from previous years, therefore uncorrelated with the disease data, to investigate how likely correlations such as the ones found in our models would have been in the absence of genuine relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.