48 resultados para photosynthetic acclimation
em CentAUR: Central Archive University of Reading - UK
Resumo:
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.
Resumo:
A modified chlorophyll fluorescence technique was evaluated as a rapid diagnostic test of the susceptibility of wheat cultivars to chlorotoluron. Two winter wheat cultivars (Maris Huntsman and Mercia) exhibited differential response to the herbicide. All of the parameters of chlorophyll fluorescence examined were strongly influenced by herbicide concentration. Additionally, the procedure adopted here for the examination of winter wheat cultivar sensitivity to herbicide indicated that the area above the fluorescence induction curve and the ratio F-V/F-M are appropriate chlorophyll fluorescence parameters for detection of differential herbicide response between wheat cultivars. The potential use of this technique as an alternative to traditional methods of screening new winter wheat cultivars for their response to photosynthetic inhibitor herbicide is demonstrated here.
Resumo:
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5degreesC to +2.5degreesC from outside temperatures) maintained at either 374 or 532 mumol mol(-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.
Resumo:
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5 degrees C to +2.5 degrees C from outside temperatures) maintained at either 374 or 532 mumol mol (-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.
Resumo:
The effects of temperature, photosynthetic photon flux density (PPFD) and photoperiod on vegetative growth and flowering of the raspberry (Rubus idaeus L.) 'Autumn Bliss' were investigated. Increased temperature resulted in an increased rate of vegetative growth and a greater rate of progress to flowering. Optimum temperatures lay in the low to mid 20degreesC range. Above this the rate of plant development declined. Increased PPFD also advanced flowering. While photoperiod did not significantly affect the rate of vegetative growth, flowering occurred earliest at intermediate photoperiods and was delayed by extreme photoperiods. These responses suggest that there is potential for adjusting cropping times of raspberry grown under protection by manipulating the environment, especially temperature.
Resumo:
A modified chlorophyll fluorescence technique was evaluated as a rapid diagnostic test of the susceptibility of wheat cultivars to chlorotoluron. Two winter wheat cultivars (Maris Huntsman and Mercia) exhibited differential response to the herbicide. All of the parameters of chlorophyll fluorescence examined were strongly influenced by herbicide concentration. Additionally, the procedure adopted here for the examination of winter wheat cultivar sensitivity to herbicide indicated that the area above the fluorescence induction curve and the ratio F-V/F-M are appropriate chlorophyll fluorescence parameters for detection of differential herbicide response between wheat cultivars. The potential use of this technique as an alternative to traditional methods of screening new winter wheat cultivars for their response to photosynthetic inhibitor herbicide is demonstrated here.
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.
Resumo:
The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.
Resumo:
Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.
Resumo:
The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.
Resumo:
Our understanding of the ancient ocean-atmosphere system has focused on oceanic proxies. However, the study of terrestrial proxies is equally necessary to constrain our understanding of ancient climates and linkages between the terrestrial and oceanic carbon reservoirs. We have analyzed carbon-isotope ratios from fossil plant material through the Valanginian and Lower Hauterivian from a shallow-marine, ammonite-constrained succession in the Crimean Peninsula of the southern Ukraine in order to determine if the Upper Valanginian positive carbon-isotope excursion is expressed in the atmosphere. delta(13)C(plant) values fluctuate around -23% to -22% for the Valanginian-Hauterivian, except during the Upper Valanginian where delta(13)C(plant) values record a positive excursion to similar to-18%. Based upon ammonite biostratigraphy from Crimea, and in conjunction with a composite Tethyan marine delta(13)C(carb) curve, several conclusions can be drawn: (1) the delta(13)C(plant) record indicates that the atmospheric carbon reservoir was affected; (2) the defined ammonite correlations between Europe and Crimea are synchronous; and (3) a change in photosynthetic carbon-isotope fractionation, caused by a decrease in atmospheric PCO2, occurred during the Upper Valanginian Positive delta(13)C excursion. Our new data, combined with other paleoenvironmental and paleoclimatic information, indicate that the Upper Valanginian was a cool period (icehouse) and highlights that the Cretaceous period was interrupted by periods of cooling and was not an equable climate as previously thought. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Transgenic crops are now grown commercially on several million hectares, principally in North America. To date, the predominant crops are maize (corn), soybean, cotton, and potatoes. In addition, there have been field trials of transgenics from at least 52 species including all the major field crops, vegetables, and several herbaceous and woody species. This review summarizes recent data relating to such trials, particularly in terms of the trends away from simple, single gene traits such as herbicide and insect resistance towards more complex agronomic traits such as growth rate and increased photosynthetic efficiency. Much of the recent information is derived from inspection of patent databases, a useful source of information on commercial priorities. The review also discusses the time scale for the introduction of these transgenes into breeding populations and their eventual release as new varieties.
Resumo:
A field trial was undertaken to determine the influence of four commercially available film-forming polymers (Bond [alkyl phenyl hydroxyl polyoxyethylene], Newman Crop Spray 11E™ [paraffinic oil], Nu-Film P [poly-1-p menthene], and Spray Gard [di-1-p menthene]) on reducing salt spray injury on two woody species, evergreen oak (Quercus ilex L.) and laurel (Prunus laurocerasus L.). Irrespective of species, the film-forming polymers Nu-Film-P and Spay Gard did not provide any significant degree of protection against salt spray damage irrespective of concentration (1% or 2%) applied as measured by leaf chlorophyll concentrations, photosynthetic efficiency, visual leaf necrosis, foliar sodium and chloride content, and growth (height, leaf area). The film-forming polymer Newman Crop Spray 11E™ provided only 1-week protection against salt spray injury. The film-forming polymer Bond provided a significant (P < 0.05) degree of protection against salt spray injury 3 months after application as manifest by higher leaf chlorophyll content, photosynthetic efficiency, height and leaf area, and lower visual leaf necrosis and foliar Na and Cl content compared with nontreated controls. In conclusion, results indicate that application of a suitable film-forming polymer can provide a significant degree of protection of up to 3 months against salt spray injury in evergreen oak and laurel. Results also indicate that when applied at 1% or 2% solutions, no problems associated with phytotoxicity and rapid degradation on the leaf surface exist.
Resumo:
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19-25 degrees C), were transferred to 4.5 or 9 degrees C at photon flux density (PPFD) of 950 mu mol m(-2) s(-1) with 10-h photoperiod for 58 h and then allowed to recover at 22 degrees C for 16 h (14 h dark and 2 h at PPFD of 180 mu mol m(-2) s(-1)). The ultrastructural responses after 4 h or 26 h at 4.5 degrees C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 degrees C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 degrees C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.