25 resultados para peripheral diabetic neuropathy
em CentAUR: Central Archive University of Reading - UK
Resumo:
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versusWTmice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker -conotoxin. In WT mice, PSNL caused a significant increase in -conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in -conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltagedependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.
Resumo:
Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.
Resumo:
Two-stage designs offer substantial advantages for early phase II studies. The interim analysis following the first stage allows the study to he stopped for futility, or more positively, it might lead to early progression to the trials needed for late phase H and phase III. If the study is to continue to its second stage, then there is an opportunity for a revision of the total sample size. Two-stage designs have been implemented widely in oncology studies in which there is a single treatment arm and patient responses are binary. In this paper the case of two-arm comparative studies in which responses are quantitative is considered. This setting is common in therapeutic areas other than oncology. It will be assumed that observations are normally distributed, but that there is some doubt concerning their standard deviation, motivating the need for sample size review. The work reported has been motivated by a study in diabetic neuropathic pain, and the development of the design for that trial is described in detail. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Platelets play an important role in hemostasis, with inappropriate platelet activation being a major contributor to debilitating and often fatal thrombosis by causing myocardial infarction and stroke. Although current antithrombotic treatment is generally well tolerated and effective, many patients still experience cardiovascular problems, which may reflect the existence of alternative underlying regulatory mechanisms in platelets to those targeted by existing drugs. In this study, we define a role for peripherally distributed members of the tachykinin family of peptides, namely substance P and the newly discovered endokinins A and B that are present in platelets, in the activation of platelet function and thrombus formation. We have reported previously that the preferred pharmacologically characterized receptor for these peptides, the NK1 receptor, is present on platelets. Inhibition or deficiency of the NK1 receptor, or SP agonist activity, resulted in substantially reduced thrombus formation in vitro under arterial flow conditions, increased bleeding time in mice, and a decrease in experimentally induced thromboembolism. Inhibition of the NK1 receptor may therefore provide benefit in patients vulnerable to thrombosis and may offer an alternative therapeutic target.
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background: There is little information about the relation between the fatty acid composition of human immune cells and the function of those cells over the habitual range of fatty acid intakes. Objective: The objective of the study was to determine the relation between the fatty acid composition of human peripheral blood mononuclear cell (PBMC) phospholipids and the functions of human immune cells. Design: One hundred fifty healthy adult subjects provided a fasting blood sample. The phagocytic and oxidative burst activities of monocytes and neutrophils were measured in whole blood. PBMCs were isolated and used to measure lymphocyte proliferation in response to the T cell mitogen concanavalin A and the production of cytokines in response to concanavalin A or bacterial lipopolysaccharide. The fatty acid composition of plasma and PBMC phospholipids was determined. Results: Wide variations in fatty acid composition of PBMC phospholipids and immune cell functions were identified among the subjects. The proportions of total Polyunsaturated fatty acids (PUFAs), of total n-6 and n-3 PUFAs, and of several individual PUFAs in PBMC phospholipids were positively correlated with phagocytosis by neutrophils and monocytes, neutrophil oxidative burst, lymphocyte proliferation, and interferon gamma production. The ratios of saturated fatty acids to PUFAs and of n-6 to n-3 PUFAs were negatively correlated with these same immune functions. The relation of PBMC fatty acid composition to monocyte oxidative burst was the reverse of its relation to monocyte phagocytosis and neutrophil oxidative burst. Conclusion: Variations in the fatty acid composition of PBMC phospholipids account for some of the variability in immune cell functions among healthy adults.
Resumo:
Epidemiological studies indicate that consumption of cruciferous vegetables (CV) can reduce the risk of cancer. Supposed mechanisms are partly the inhibition of phase I and the induction of phase II enzymes. The aim of this study was to investigate in vitro and in vivo effects of watercress (WC), a member of the CV family, on chemopreventive parameters using human peripheral blood mononuclear cells (PBMC) as surrogate cells. We investigated the hypothesis that WC reduces cancer risk by inducing detoxification enzymes in a genotype-dependent manner. In vitro gene expression and enzyme activity experiments used PBMC incubated with a crude extract from fresh watercress (WCE, 0.1-10 mu L/mL with 8.2 g WC per 1 mL extract) or with one main key compound phenethyl isothiocyanate (PEITC, 1-10 mu M). From an in vivo perspective, gene expression and glutathione S-transferase (GST) polymorphisms were determined in PBMC obtained from a human intervention study in which subjects consumed 85 g WC per day for 8 weeks. The influence of WC consumption on gene expression was determined for detoxification enzymes such as superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), whilst the SOD and GPX activities in red blood cells were also analysed with respect to GST genotypes. In vitro exposure of PBMC to WCE or PEITC (24 h) increased gene expression for both detoxification enzymes GPX1 (5.5-fold, 1 mu L/mL WCE, 3.7-fold 1 mu M PEITC) and SOD2 (12.1-fold, 10 mu L/mL WCE, 7.3-fold, 10 mu M PEITC), and increased SOD2 activity (1.9-fold, 10 mu L/mL WCE). The WC intervention had no significant effect on in vivo PBMC gene expression, as high individual variations were observed. However, a small but significant increase in GPX (p = 0.025) and SOD enzyme activity (p = 0.054) in red blood cells was observed in GSTM1*0, but not in GSTM1*1 individuals, whilst the GSTT1 genotype had no impact. The results indicate that WC is able to modulate the enzymes SOD and GPX in blood cells in vitro and in vivo, and suggest that the capacity of moderate intake of CV to induce detoxification is dependent in part on the GSTM1 genotype.
Resumo:
Background: The incidence of cardiovascular diseases increases after menopause, and soy consumption is suggested to inhibit disease development. Objective: The objective was to identify biomarkers of response to a dietary supplementation with an isoflavone extract in postmenopausal women by proteome analysis of peripheral blood mononuclear cells. Design: The study with healthy postmenopausal woman was performed in a placebo-controlled sequential design. Peripheral mononuclear blood cells were collected from 10 volunteers after 8 wk of receiving daily 2 placebo cereal bars and after a subsequent 8 wk of intervention with 2 cereal bars each providing 25 mg of isoflavones. The proteome of the cells was visualized after 2-dimensional gel electrophoresis, and peptide mass fingerprinting served to identify proteins that by the intervention displayed altered protein concentrations. Results: Twenty-nine proteins were identified that showed significantly altered expression in the mononuclear blood cells under the soy-isoflavone intervention, including a variety of proteins involved in an antiinflammatory response. Heat shock protein 70 or a lymphocyte-specific protein phosphatase and proteins that promote increased fibrinolysis, such as a-enolase, were found at increased intensities, whereas those that mediate adhesion, migration, and proliferation of vascular smooth muscle cells, such as galectin-1, were found at reduced intensities after soy extract consumption. Conclusion: Protcome analysis identified in vivo markers that respond to a dietary intervention with isoflavone-enriched soy extract in postmenopausal women. The nature of the proteins identified suggests that soy isoflavones may increase the anti inflammatory response in blood mononuclear cells that might contribute to the atherosclerosis-preventive activities of a soy-rich diet.
Resumo:
Berberine has been shown to have hypoglycaemic activity in several in vitro and in vivo models, although the mechanism of action is not fully known. Berberis lyceum Royle root produces high concentrations of berberine, and in traditional medicine, the whole extract of this plant is used widely to treat diabetes. The antidiabetic activity of the ethanol root extract of Berberis lyceum was compared with pure berberine in normal and alloxan-diabetic rats using similar doses of each. The concentration of berberine in the extract was determined to be 80% dry weight with only trace amounts of other alkaloids present. The purpose of the study was to investigate the effects of berberine and a whole extract of Berberis lyceum on blood glucose and other parameters associated with diabetes, to compare the effects of the crude extract with those of pure berberine and thus validate its use as a therapeutic agent, and finally to identify any contribution of the other components of the extract to these effects. Oral administration of 50 mg/kg of Berberis extract and berberine to normal and experimental diabetic rats produced a significant (p < 0.05) reduction in blood glucose levels from days 3-7 days of treatment. Significant effects were also observed on the glucose tolerance, glycosylated haemoglobin, serum lipid profiles and body weight of experimental animals. Berberis extract and berberine demonstrated similar effects on all parameters measured, and although the extract was comparable in efficacy to berberine, it did not produce any effects additional to those shown by pure berberine. The results support the use of the extract in traditional medicine, and demonstrate that apart from being a highly cost-effective means of treating with berberine, the total extract does not appear to confer any additional benefits or disadvantages compared with the pure compound. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.