26 resultados para patter discovery.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Observation of adverse drug reactions during drug development can cause closure of the whole programme. However, if association between the genotype and the risk of an adverse event is discovered, then it might suffice to exclude patients of certain genotypes from future recruitment. Various sequential and non-sequential procedures are available to identify an association between the whole genome, or at least a portion of it, and the incidence of adverse events. In this paper we start with a suspected association between the genotype and the risk of an adverse event and suppose that the genetic subgroups with elevated risk can be identified. Our focus is determination of whether the patients identified as being at risk should be excluded from further studies of the drug. We propose using a utility function to? determine the appropriate action, taking into account the relative costs of suffering an adverse reaction and of failing to alleviate the patient's disease. Two illustrative examples are presented, one comparing patients who suffer from an adverse event with contemporary patients who do not, and the other making use of a reference control group. We also illustrate two classification methods, LASSO and CART, for identifying patients at risk, but we stress that any appropriate classification method could be used in conjunction with the proposed utility function. Our emphasis is on determining the action to take rather than on providing definitive evidence of an association. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Resistant strains of Plasmodium falciparum and the unavailability of useful antimalarial vaccines reinforce the need to develop new efficacious antimalarials. This study details a pharmacophore model that has been used to identify a potent, soluble, orally bioavailable antimalarial bisquinoline, metaquine (N,N'-bis(7-chloroquinolin-4-yl)benzene-1,3-diamine) (dihydrochloride), which is active against Plasmodium berghei in vivo (oral ID50 of 25 mu mol/kg) and multidrug-resistant Plasmodium falciparum K1 in vitro (0.17 mu M). Metaquine shows strong affinity for the putative antimalarial receptor, heme at pH 7.4 in aqueous DMSO. Both crystallographic analyses and quantum mechanical calculations (HF/6-31+G*) reveal important regions of protonation and bonding thought to persist at parasitic vacuolar pH concordant with our receptor model. Formation of drug-heme adduct in solution was confirmed using high-resolution positive ion electrospray mass spectrometry. Metaquine showed strong binding with the receptor in a 1: 1 ratio (log K = 5.7 +/- 0.1) that was predicted by molecular mechanics calculations. This study illustrates a rational multidisciplinary approach for the development of new 4-aminoquinoline antimalarials, with efficacy superior to chloroquine, based on the use of a pharmacophore model.
Resumo:
A combined computational and experimental polymorph search was undertaken to establish the crystal forms of 7-fluoroisatin, a simple molecule with no reported crystal structures, to evaluate the value of crystal structure prediction studies as an aid to solid form discovery. Three polymorphs were found in a manual crystallisation screen, as well as two solvates. Form I ( P2(1)/c, Z0 1), found from the majority of solvent evaporation experiments, corresponded to the most stable form in the computational search of Z0 1 structures. Form III ( P21/ a, Z0 2) is probably a metastable form, which was only found concomitantly with form I, and has the same dimeric R2 2( 8) hydrogen bonding motif as form I and the majority of the computed low energy structures. However, the most thermodynamically stable polymorph, form II ( P1 , Z0 2), has an expanded four molecule R 4 4( 18) hydrogen bonding motif, which could not have been found within the routine computational study. The computed relative energies of the three forms are not in accord with experimental results. Thus, the experimental finding of three crystalline polymorphs of 7- fluoroisatin illustrates the many challenges for computational screening to be a tool for the experimental crystal engineer, in contrast to the results for an analogous investigation of 5- fluoroisatin.
Resumo:
There has been a clear lack of common data exchange semantics for inter-organisational workflow management systems where the research has mainly focused on technical issues rather than language constructs. This paper presents the neutral data exchanges semantics required for the workflow integration within the AXAEDIS framework and presents the mechanism for object discovery from the object repository where little or no knowledge about the object is available. The paper also presents workflow independent integration architecture with the AXAEDIS Framework.
Resumo:
Importance of biomarker discovery in men’s cancer diagnosis and prognosis Each year around 10,000 men in the UK die as a result of prostate cancer (PCa) making it the 3rd most common cancer behind lung and breast cancer; worldwide more than 670,000 men are diagnosed every year with the disease [1]. Current methods of diagnosis of PCa mainly rely on the detection of elevated prostate-specific antigen (PSA) levels in serum and/or physical examination by a doctor for the detection of an abnormal prostate. PSA is a glycoprotein produced almost exclusively by the epithelial cells of the prostate gland [2]. Its role is not fully understood, although it is known that it forms part of the ejaculate and its function is to solubilise the sperm to give them the mobility to swim. Raised PSA levels in serum are thought to be due to both an increased production of PSA from the proliferated prostate cells, and a diminished architecture of affected cells, allowing an easier distribution of PSA into the wider circulatory system.
Resumo:
In recent years, there have been major developments in the understanding of the cell cycle. It is now known that normal cellular proliferation is tightly regulated by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. The expression and activity of components of the cell cycle can be altered during the development of a variety of diseases where aberrant proliferation contributes to the pathology of the illness. Apart from yielding a new source of untapped therapeutic targets, it is likely that manipulating the activity of such proteins in diseased states will provide an important route for treating proliferative disorders, and the opportunity to develop a novel class of future medicines.
Resumo:
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics.