72 resultados para passive microwave remote sensing
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
Snow properties have been retrieved from satellite data for many decades. While snow extent is generally felt to be obtained reliably from visible-band data, there is less confidence in the measurements of snow mass or water equivalent derived from passive microwave instruments. This paper briefly reviews historical passive microwave instruments and products, and compares the large-scale patterns from these sources to those of general circulation models and leading reanalysis products. Differences are seen to be large between the datasets, particularly over Siberia. A better understanding of the errors in both the model-based and measurement-based datasets is required to exploit both fully. Techniques to apply to the satellite measurements for improved large-scale snow data are suggested.
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements.
Resumo:
We have conducted the first extensive field test of two new methods to retrieve optical properties for overhead clouds that range from patchy to overcast. The methods use measurements of zenith radiance at 673 and 870 nm wavelengths and require the presence of green vegetation in the surrounding area. The test was conducted at the Atmospheric Radiation Measurement Program Oklahoma site during September–November 2004. These methods work because at 673 nm (red) and 870 nm (near infrared (NIR)), clouds have nearly identical optical properties, while vegetated surfaces reflect quite differently. The first method, dubbed REDvsNIR, retrieves not only cloud optical depth τ but also radiative cloud fraction. Because of the 1-s time resolution of our radiance measurements, we are able for the first time to capture changes in cloud optical properties at the natural timescale of cloud evolution. We compared values of τ retrieved by REDvsNIR to those retrieved from downward shortwave fluxes and from microwave brightness temperatures. The flux method generally underestimates τ relative to the REDvsNIR method. Even for overcast but inhomogeneous clouds, differences between REDvsNIR and the flux method can be as large as 50%. In addition, REDvsNIR agreed to better than 15% with the microwave method for both overcast and broken clouds. The second method, dubbed COUPLED, retrieves τ by combining zenith radiances with fluxes. While extra information from fluxes was expected to improve retrievals, this is not always the case. In general, however, the COUPLED and REDvsNIR methods retrieve τ to within 15% of each other.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modelling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The delineation of Geomorphic Process Units (GPUs) aims to quantify past, current and future geomorphological processes and the sediment flux associated with them. Five GPUs have been identified for the Okstindan area of northern Norway and these were derived from the combination of Landsat satellite imagery (TM and ETM+) with stereo aerial photographs (used to construct a Digital Elevation Model) and ground survey. The Okstindan study area is sub-arctic and mountainous and is dominated by glacial and periglacial processes. The GPUs exclude the glacial system (some 37% of the study area) and hence they are focussed upon periglacial and colluvial processes. The identified GPUs are: 1. solifluction and rill erosion; 2. talus creep, slope wash and rill erosion; 3. accumulation of debris by rock and boulder fall; 4. rockwalls; and 5. stable ground with dissolved transport. The GPUs have been applied to a ‘test site’ within the study area in order to illustrate their potential for mapping the spatial distribution of geomorphological processes. The test site within the study area is a catchment which is representative of the range of geomorphological processes identified.
Resumo:
Airborne dust is of concern due to hazards in the localities affected by erosion, transport and deposition, but it is also of global concern due to uncertainties over its role in radiative forcing of climate. In order to model the environmental impact of dust, we need a better knowledge of sources and transport processes. Satellite remote sensing has been instrumental in providing this knowledge, through long time series of observations of atmospheric dust transport. Three remote sensing methodologies have been used, and are reviewed briefly in this paper. Firstly the use of observations from the Total Ozone Mapping Spectrometer (TOMS), secondly the use of the Infrared Difference Dust Index (IDDI) from Meterosat infrared data, thirdly the use of MODIS images from the rapid response system. These data have highlighted the major global sources of dust, mist of which are associated with endoreic drainage basins in deserts, which held lakes during Quaternary humid climate phases, and identified the Bodele Depression in Tchad as the dustiest place on Earth.