47 resultados para parasitoid pupae

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: What are the life-history costs for a predatory insect of surviving parasitoid attack, and can parasitoid attack alter predator-prey interactions? Hypotheses: Survivorship is influenced by host age. Hosts that suffer parasitoid attack grow more slowly and consume fewer prey. Those that survive attack are smaller as adults and show reduced survivorship. Organisms: The aphidophagous hoverfly Episyrphus balteatus, its endoparasitoid wasp Diplazon laetatorius and its prey, the pea aphid, Acyrthosiphon pisum. Site of experiments: All experiments were conducted in controlled temperature rooms and chambers in the laboratory. Methods: Episyrphus balteatus larvae of each instar were exposed to attack by Diplazon laetatorius, then dissected to measure the encapsulation response (a measure of immunity). Second instar larvae were either attacked or not attacked by D. laetatorius. Their development rates and numbers of prey consumed were noted. The size and survivorship of surviving (immune) and control hoverflies were compared following eclosion. Conclusions: Successful immune response increased with larval age (first instar 0%, second instar 40%, third instar 100% survival). Second instar larvae that successfully resisted parasitoid attack were larger as pupae (but not as adults) and showed reduced adult survivorship. Female adult survivors were more likely than male survivors to have died within 16 days of eclosion, but there was no difference between unattacked male and female control hoverflies. Attacked larvae, irrespective of immune status, consumed fewer aphids than unattacked individuals. Episyrphus balteatus suffers significant costs of resisting parasitoid attack, and parasitoid attack can reduce the top-down effects of an insect predator, irrespective of whether the host mounts an immune response or not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The evolution of host resistance to parasitoid attack will be constrained by two factors: the costs of the ability to defend against attack, and the costs of surviving actual attack. These factors have been investigated using Drosophila melanogaster and its parasitoids as a model system. The costs of defensive ability are expressed as a trade-off with larval competitive ability, whereas the costs of actual defence are exhibited in terms of reduced adult fecundity and size. 2. The costs of actual defence may be ameliorated by the host-choice decisions made by Pachycrepoideus vindemiae, a pupal parasitoid. If larvae that have successfully encapsulated a parasitoid develop into poorer quality hosts, then these may be rejected by ovipositing pupal parasitoids. 3. Pupae developing from larvae that have encapsulated the parasitoid Asobara tabida are smaller and have relatively thinner puparia. Thinner puparia are likely to be associated with a reduction in mechanical strength and possibly with a decrease in desiccation tolerance. 4. Pachycrepoideus vindemiae that develop in capsule-bearing pupae are smaller than those that emerge from previously unattacked hosts. This supports the prediction that ovipositing female P. vindemiae should avoid attacking capsule-bearing hosts. However, in choice experiments with 1-day-old pupae, P. vindemiae females oviposited preferentially in hosts containing a capsule, whereas there was no preference found with 4-day-old hosts. This appears to be a maladaptive host choice decision, as the female pupal parasitoids are preferentially attacking hosts that will result in a reduction of their own fitness. 5. The increased likelihood of attack by a pupal parasitoid is another cost of actual defence against larval parasitoid attack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30-35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility of late instar vine weevil Otiorhynchus sulcatus larvae and pupae to four species entomopathogenic nematodes were tested. Bioassays on production and infectivity to larvae and pupae were compared for two steinernematids and two heterorhabditis such as Steinernema carpocapsae, S. feltiae, Heterorhabditis indica and H. bacteriophora. Nematodes production of all species was determined by the number infective juveniles (IJs) established in vine weevil larvae and pupae O. sulcatus using sand and filter paper bioassay. S. feltiae produced the maximum number in larvae and pupae at 20°C as compared to other nematodes but production of H. indica, was better at 25°C in larvae and pupae followed by H. bacteriophora, S. carpocapsae and Infectivity test of larvae and pupae was also done in sand media. Infective juveniles recovered from larvae and pupae when infected with S. feltiae produced maximum infective juveniles at 20°C temperatures than all other isolates. H. bacteriophora produced higher number of IJs in larvae and pupae than all other nematode isolates at 25°C. This paper indicates the application of nematodes with the knowledge of insect pest biology represents a possible new strategy for O. sulcatus larvae and pupae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigra-Uroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in large colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50-200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a field experiment the effects of Sumicidin (super) 5EC (fenitrothion), Metasystox EC25 (oxydemeton-methyl) and Tamaron SL600 (methamidophos), applied at different dosages, were evaluated against peach-potato aphid, Myzus persicae (Sulzer) and its parasitoid Aphidius matricariae Haliday on Cardinal and Desiree (respectively partially resistant and susceptible potato cultivars to M. persicae). Sumicidin (super) 5EC was found about 30% more effective in reducing aphid populations than the other insecticides tested. The highest doses of each insecticide caused maximum aphid mortality; in general aphid mortality appeared dose dependent. Almost all the higher and lower doses of the tested insecticides were about 19% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with second highest dose on Cardinal as with the highest dose on Desiree. Also the same control level was achieved at the lowest dosage rate on Cardinal compared with the next higher dose on the Desiree. Sumicidin (super) 5EC was found least toxic to the parasitoid, A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging female parasitoids; increase of about 22, 67 and 47% respectively were found in parasitoid performance with Tamaron SL600 which was found comparatively highly toxic. The highest doses of all insecticides were found clearly toxic to the parasitoid. In general, effects on the parasitoid were dose dependent. Maximum yield was obtained from the second highest dose of Sumicidin (super) 5EC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field studies were conducted in Pakistan to examine the effects and the interaction of two differentially resistant potato cultivars i.e. Cardinal and Desiree (one partially resistant and one susceptible to Myzus persicae (Sulzer), respectively) with different dosage rates of granular insecticides, at different time intervals after application in relation to percent kill of M. persicae and effects on the parasitoid Aphidius matricariae Haliday (i.e. the third trophic level) within the aphid mummies, percent parasitism and Thimet 10G (phorate) was found about 30% more effective in reducing aphid population than the Furadan 3G (carbofuran). The highest doses of each insecticide caused maximum aphid mortality, in general aphid mortality appeared dose dependent. Mostly all the higher and lower doses of the tested insecticides were about 10% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with the second highest dose on Cardinal as with the highest dose on Desiree. Also the same level of control was observed at the lowest dose on Cardinal as with the second last lowest dose on Desiree. Furadan 3G was found least toxic to the A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging females. Furadan 3G gave 13, 15 and 6% higher figures, respectively from the parasitoid characteristics than Thimet 10G. The highest doses of both insecticides were clearly toxic to the parasitoid. In general, the effects on the parasitoid were dose dependent. The second highest dose of Thimet 10G, gave the maximum yield

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has shown that the evolution of Drosophila melanogaster resistance to attack by the parasitoid Asobara tabida is constrained by a trade-off with larval competitive ability. However, there are two very important questions that need to be answered. First, is this a general cost, or is it parasitoid specific? Second, does a selected increase in immune response against one parasitoid species result in a correlated change in resistance to other parasitoid species? The answers to both questions will influence the coevolutionary dynamics of these species, and also may have a previously unconsidered, yet important, influence on community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Costs of resistance are widely assumed to be important in the evolution of parasite and pathogen defence in animals, but they have been demonstrated experimentally on very few occasions. Endoparasitoids are insects whose larvae develop inside the bodies of other insects where they defend themselves from attack by their hosts' immune systems (especially cellular encapsulation). Working with Drosophila melanogaster and its endoparasitoid Leptopilina boulardi, we selected for increased resistance in four replicate populations of flies. The percentage of flies surviving attack increased from about 0.5% to between 40% and 50% in five generations, revealing substantial additive genetic variation in resistance in the field population from which our culture was established. In comparison with four control lines, flies from selected lines suffered from lower larval survival under conditions of moderate to severe intraspecific competition.