48 resultados para panel data modeling

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The farm-level success of Bt-cotton in developing countries is well documented. However, the literature has only recently begun to recognise the importance of accounting for the effects of the technology on production risk, in addition to the mean effect estimated by previous studies. The risk effects of the technology are likely very important to smallholder farmers in the developing world due to their risk-aversion. We advance the emergent literature on Bt-cotton and production risk by using panel data methods to control for possible endogeneity of Bt-adoption. We estimate two models, the first a fixed-effects version of the Just and Pope model with additive individual and time effects, and the second a variation of the model in which inputs and variety choice are allowed to affect the variance of the time effect and its correlation with the idiosyncratic error. The models are applied to panel data on smallholder cotton production in India and South Africa. Our results suggest a risk-reducing effect of Bt-cotton in India, but an inconclusive picture in South Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper,the Prony's method is applied to the time-domain waveform data modelling in the presence of noise.The following three problems encountered in this work are studied:(1)determination of the order of waveform;(2)de-termination of numbers of multiple roots;(3)determination of the residues.The methods of solving these problems are given and simulated on the computer.Finally,an output pulse of model PG-10N signal generator and the distorted waveform obtained by transmitting the pulse above mentioned through a piece of coaxial cable are modelled,and satisfactory results are obtained.So the effectiveness of Prony's method in waveform data modelling in the presence of noise is confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle aim of this research is to elucidate the factors driving the total rate of return of non-listed funds using a panel data analytical framework. In line with previous results, we find that core funds exhibit lower yet more stable returns than value-added and, in particular, opportunistic funds, both cross-sectionally and over time. After taking into account overall market exposure, as measured by weighted market returns, the excess returns of value-added and opportunity funds are likely to stem from: high leverage, high exposure to development, active asset management and investment in specialized property sectors. A random effects estimation of the panel data model largely confirms the findings obtained from the fixed effects model. Again, the country and sector property effect shows the strongest significance in explaining total returns. The stock market variable is negative which hints at switching effects between competing asset classes. For opportunity funds, on average, the returns attributable to gearing are three times higher than those for value added funds and over five times higher than for core funds. Overall, there is relatively strong evidence indicating that country and sector allocation, style, gearing and fund size combinations impact on the performance of unlisted real estate funds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates whether obtaining sustainable building certification entails a rental premium for commercial office buildings and tracks its development over time. To this aim, both a difference-in-differences and a fixed-effects model approach are applied to a large panel dataset of office buildings in the United States in the 2000–2010 period. The results indicate a significant rental premium for both ENERGY STAR and LEED certified buildings. Controlling for confounding factors, this premium is shown to have increased steadily from 2006 to 2008, followed by a moderate decline in the subsequent periods. The results also show a significant positive relationship between ENERGY STAR labeling and building occupancy rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of non-listed real estate funds over the last several years has contributed towards establishing this sector as a major investment vehicle for gaining exposure to commercial real estate. Academic research has not kept up with this development, however, as there are still only a few published studies on non-listed real estate funds. This paper aims to identify the factors driving the total return over a seven-year period. Influential factors tested in our analysis include the weighted underlying direct property returns in each country and sector as well as fund size, investment style gearing and the distribution yield. Furthermore, we analyze the interaction of non-listed real estate funds with the performance of the overall economy and that of competing asset classes and found that lagged GDP growth and stock market returns as well as contemporaneous government bond rates are significant and positive predictors of annual fund performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using panel data for 111 countries over the period 1982–2002, we employ two indexes that cover a wide range of human rights to empirically analyze whether and to what extent terrorism affects human rights. According to our results,terrorism significantly, but not dramatically, diminishes governments’ respect for basic human rights such as the absence of extrajudicial killings, political imprisonment, and torture. The result is robust to how we measure terrorist attacks, to the method of estimation, and to the choice of countries in our sample. However, we find no effect of terrorism on empowerment rights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a newly developed integrated indicator system with entropy weighting, we analyzed the panel data of 577 recorded disasters in 30 provinces of China from 1985–2011 to identify their links with the subsequent economic growth. Meteorological disasters promote economic growth through human capital instead of physical capital. Geological disasters did not trigger local economic growth from 1999–2011. Generally, natural disasters overall had no significant impact on economic growth from 1985–1998. Thus, human capital reinvestment should be the aim in managing recoveries, and it should be used to regenerate the local economy based on long-term sustainable development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is remarkable agreement in expectations today for vastly improved ocean data management a decade from now -- capabilities that will help to bring significant benefits to ocean research and to society. Advancing data management to such a degree, however, will require cultural and policy changes that are slow to effect. The technological foundations upon which data management systems are built are certain to continue advancing rapidly in parallel. These considerations argue for adopting attitudes of pragmatism and realism when planning data management strategies. In this paper we adopt those attitudes as we outline opportunities for progress in ocean data management. We begin with a synopsis of expectations for integrated ocean data management a decade from now. We discuss factors that should be considered by those evaluating candidate “standards”. We highlight challenges and opportunities in a number of technical areas, including “Web 2.0” applications, data modeling, data discovery and metadata, real-time operational data, archival of data, biological data management and satellite data management. We discuss the importance of investments in the development of software toolkits to accelerate progress. We conclude the paper by recommending a few specific, short term targets for implementation, that we believe to be both significant and achievable, and calling for action by community leadership to effect these advancements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

What does the saving–investment (SI) relation really measure and how should the SI relation be measured? These are two of the most discussed issues triggered by the so-called Feldstein–Horioka puzzle. Based on panel data we introduce a new variant of functional coefficient models that allows to separate long and short to medium run parameter dependence. The new modeling framework is applied to uncover the determinants of the SI relation. Macroeconomic state variables such as openness, the age dependency ratio, government current and consumption expenditures are found to affect the SI relation significantly in the long run.