17 resultados para oxygen separation membrane

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, a two-step membrane filtration process was developed using a lab scale tangential flow filtration (TFF) unit with 10 kDa MWCO regenerated cellulose (RC) and polyethersulfone (PES)membranes at three different transmembrane pressure (TMP) of 1.5 bar, 2.0 bar and 2.5 bar. Two modes of filtrations were studied, with and without cleaning of membranes prior to UF-2. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effectively retained by the membrane in UF-2. Flux of permeates, rejection coefficient (R) of surfactin and proteinwere measured during the filtrations. Overall the three different TMPs applied have no significant effect in the filtrations and PES is the more suitable membrane to selectively separate surfactin from fermentation broth, achieving high recovery and level of purity. In addition this two-step UF process is scalable for larger volume of samples without affecting the original functionality of surfactin, although membranes permeability can be affected due to exposure to methanolic solution used in UF-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A future goal in nuclear fuel reprocessing is the conversion or transmutation of the long-lived radioisotopes of minor actinides, such as americium, into short-lived isotopes by irradiation with neutrons. In order to achieve this transmutation, it is necessary to separate the minor actinides(III), [An(Ill)], from the lanthanides(III), [Ln(Ill)], by solvent extraction (partitioning), because the lanthanides absorb neutrons too effectively and hence limit neutron capture by the transmutable actinides. Partitioning using ligands containing only carbon, hydrogen, nitrogen and oxygen atoms is desirable because they are completely incinerable and thus the final volume of waste is minimised [1]. Nitric acid media will be used in the extraction experiments because it is envisaged that the An(III)/Ln(III) separation process could take place after the PUREX process. There is no doubt that the correct design of a molecule that is capable of acting as a ligand or extraction reagent is required for the effective separation of metal ions such as actinides(III) from lanthanides. Recent attention has been directed towards heterocyclic ligands with for the preferential separation of the minor actinides. Although such molecules have a rich chemistry, this is only now becoming sufficiently well understood in relation to the partitioning process [2]. The molecules shown in Figures I and 2 will be the principal focus of this study. Although the examples chosen here are used rather specific, the guidelines can be extended to other areas such as the separation of precious metals [3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure alpha-lactoglobulin solution was in excess of 1.5 mg/cm(2) of membrane. This binding capacity was reduced to approximately 1.2 mg/cm(2) when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In membrane distillation in a conventional membrane module, the enthalpies of vaporisation and condensation are supplied and removed by changes in the temperatures of the feed and permeate streams, respectively. Less than 5% of the feed can be distilled in a single pass, because the potential changes in the enthalpies of the liquid streams are much smaller than the enthalpy of vaporisation. Furthermore, the driving force for mass transfer reduces as the feed stream temperature and vapour pressure fall during distillation. These restrictions can be avoided if the enthalpy of vaporisation is uncoupled from the heat capacities of the feed and permeate streams. A specified distillation can then be effected continuously in a single module. Calculations are presented which estimate the performance of a flat plate unit in which the enthalpy of distillation is supplied and removed by the condensing and boiling of thermal fluids in separate circuits, and the imposed temperature difference is independent of position. Because the mass flux through the membrane is dependent on vapour pressure, membrane distillation is suited to applications with a high membrane temperature. The maximum mass flux in the proposed module geometry is predicted to be 30 kg/m2 per h at atmospheric pressure when the membrane temperature is 65°C. Operation at higher membrane temperatures is predicted to raise the mass flux, for example to 85 kg/m2 per h at a membrane temperature of 100°C. This would require pressurisation to 20 bar to prevent boiling at the heating plate of the feed channel. Pre-pressurisation of the membrane pores and control of the dissolved gas concentrations in the feed and the recyled permeate should be investigated as a means to achieve high temperature membrane distillation without pore penetration and wetting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper concerns the modeling of membrane distillation. The model developed has been used to predict permeate fluxes using different initial operating conditions. PVDF and PTFE membranes were successfully used in a flat plate module to experimentally confirm the theoretical results. The correlation between theory and experiment was close for both membranes. The PTFE membranes produced higher fluxes than PVDF. A Versapor membrane was also used for this work. This membrane is a composite, with a thin porous layer on a support layer. It was found not to be suitable for membrane distillation. A comparison of the heat flux was also carried out. Again, there was good correlation between theory and experiment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk oligosaccharides are believed to have beneficial biological properties. Caprine milk has a relatively high concentration of oligosaccharides in comparison to other ruminant milks and has the closest oligosaccharide profile to human milk. The first stage in recovering oligosaccharides from caprine milk whey, a by-product of cheese making, was accomplished by ultrafiltration to remove proteins and fat globules, leaving more than 97% of the initial carbohydrates, mainly lactose, in the permeate. The ultrafiltered permeate was further processed using a 1 kDa ‘tight’ ultrafiltration membrane, which retained less than 7% of the remaining lactose. The final retentate was fractionated by preparative scale molecular size exclusion chromatography, to yield 28 fractions, of which oligosaccharide-rich fractions were detected somewhere between fractions 9/10 to 16/17, suitable for functionality and gut health promotion testing. All fractions were evaluated for their oligosaccharide and carbohydrate profiles using three complementary analytical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.