8 resultados para oxidizing species generation
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is increasing evidence to suggest that neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Therefore, treatment regimes aimed at modulating neuroinflammatory processes may act to slow the progression of these debilitating brain disorders. Recently, a group of dietary polyphenols known as flavonoids have been shown to exert neuroprotective effects in vivo and in neuronal cell models. In this review we discuss the evidence relating to the modulation of neuroinflammation by flavonoids. We highlight the evidence which suggests their mechanism of action involves: 1) attenuation of the release of cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α); 2) an inhibitory action against inducible nitric oxide synthase (iNOS) induction and subsequent nitric oxide (NO•) production; 3) inhibition of the activation of NADPH oxidase and subsequent reactive oxygen species generation; 4) a capacity to down-regulate the activity of pro-inflammatory transcription factors such as nuclear factor-κB (NF-κB); and 5) the potential to modulate signalling pathways such as mitogen-activated protein kinase (MAPK) cascade. We also consider the potential of these dietary compounds to represent novel therapeutic agents by considering their metabolism in the body and their ability to access the brain via the blood brain barrier. Finally, we discuss future areas of study which are necessary before dietary flavonoids can be established as therapeutic agents against neuroinflammation.
Resumo:
Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.
Resumo:
To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.
Resumo:
Warfarin resistance was first discovered among Norway rat (Rattus norvegicus) populations in Scotland in 1958 and further reports of resistance, both in this species and in others, soon followed from other parts of Europe and the United States. Researchers quickly defined the practical impact of these resistance phenomena and developed robust methods by which to monitor their spread. These tasks were relatively simple because of the high degree of immunity to warfarin conferred by the resistance genes. Later, the second generation anticoagulants were introduced to control rodents resistant to the warfarin-like compounds, but resistance to difenacoum, bromadiolone and brodifacoum is now reported in certain localities in Europe and elsewhere. However, the adoption of test methods designed initially for use with the first generation compounds to identify resistance to compounds of the second generation has led to some practical difficulties in conducting tests and in establishing meaningful resistance baselines. In particular, the results of certain test methodologies are difficult to interpret in terms of the likely impact on practical control treatments of the resistance phenomena they seek to identify. This paper defines rodenticide resistance in the context of both first and second generation anticoagulants. It examines the advantages and disadvantages of existing laboratory and field methods used in the detection of rodent populations resistant to anticoagulants and proposes some improvements in the application of these techniques and in the interpretation of their results.
Resumo:
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.
Resumo:
Conditions of stress, such as myocardial infarction, stimulate up-regulation of heme oxygenase (HO-1) to provide cardioprotection. Here, we show that CO, a product of heme catabolism by HO-1, directly inhibits native rat cardiomyocyte L-type Ca2+ currents and the recombinant alpha1C subunit of the human cardiac L-type Ca2+ channel. CO (applied via a recognized CO donor molecule or as the dissolved gas) caused reversible, voltage-independent channel inhibition, which was dependent on the presence of a spliced insert in the cytoplasmic C-terminal region of the channel. Sequential molecular dissection and point mutagenesis identified three key cysteine residues within the proximal 31 amino acids of the splice insert required for CO sensitivity. CO-mediated inhibition was independent of nitric oxide and protein kinase G but was prevented by antioxidants and the reducing agent, dithiothreitol. Inhibition of NADPH oxidase and xanthine oxidase did not affect the inhibitory actions of CO. Instead, inhibitors of complex III (but not complex I) of the mitochondrial electron transport chain and a mitochondrially targeted antioxidant (Mito Q) fully prevented the effects of CO. Our data indicate that the cardioprotective effects of HO-1 activity may be attributable to an inhibitory action of CO on cardiac L-type Ca2+ channels. Inhibition arises from the ability of CO to promote generation of reactive oxygen species from complex III of mitochondria. This in turn leads to redox modulation of any or all of three critical cysteine residues in the channel's cytoplasmic C-terminal tail, resulting in channel inhibition.
Resumo:
Noccaea caerulescens (formerly Thlaspi caerulescens) is a widely studied metal hyperaccumulator. However, molecular genetic studies are challenging in this species because of its vernal-obligate biennial life cycle of 7-9 months. Here, we describe the development of genetically stable, faster cycling lines of N. caerulescens which are nonvernal-obligate. A total of 5500 M(0) seeds from Saint Laurent Le Minier (France) were subjected to fast neutron mutagenesis. Following vernalization of young plants, 79 of plants survived to maturity. In all, 80 000 M(2) lines were screened for flowering in the absence of vernalization. Floral initials were observed in 35 lines, with nine flowering in < 12 wk. Two lines (A2 and A7) were selfed to the M(4) generation. Floral initials were observed 66 and 87 d after sowing (DAS) in A2 and A7, respectively. Silicle development occurred for all A2 and for most A7 at 92 and 123 DAS, respectively. Floral or silicle development was not observed in wild-type (WT) plants. Leaf zinc (Zn) concentration was similar in WT, A2 and A7 lines. These lines should facilitate future genetic studies of this remarkable species. Seed is publicly available through the European Arabidopsis Stock Centre (NASC).
Resumo:
Background: Symbiotic relationships have contributed to major evolutionary innovations, the maintenance of fundamental ecosystem functions, and the generation and maintenance of biodiversity. However, the exact nature of host/symbiont associations, which has important consequences for their dynamics, is often poorly known due to limited understanding of symbiont taxonomy and species diversity. Among classical symbioses, figs and their pollinating wasps constitute a highly diverse keystone resource in tropical forest and savannah environments. Historically, they were considered to exemplify extreme reciprocal partner specificity (one-to-one host-symbiont species relationships), but recent work has revealed several more complex cases. However, there is a striking lack of studies with the specific aims of assessing symbiont diversity and how this varies across the geographic range of the host. Results: Here, we use molecular methods to investigate cryptic diversity in the pollinating wasps of a widespread Australian fig species. Standard barcoding genes and methods were not conclusive, but incorporation of phylogenetic analyses and a recently developed nuclear barcoding gene (ITS2), gave strong support for five pollinator species. Each pollinator species was most common in a different geographic region, emphasising the importance of wide geographic sampling to uncover diversity, and the scope for divergence in coevolutionary trajectories across the host plant range. In addition, most regions had multiple coexisting pollinators, raising the question of how they coexist in apparently similar or identical resource niches. Conclusion: Our study offers a striking example of extreme deviation from reciprocal partner specificity over the full geographical range of a fig-wasp system. It also suggests that superficially identical species may be able to co-exist in a mutualistic setting albeit at different frequencies in relation to their fig host’s range. We show that comprehensive sampling and molecular taxonomic techniques may be required to uncover the true structure of cryptic biodiversity underpinning intimate ecological interactions.