2 resultados para owner-driven-reconstruction

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article uses census data for Berkshire to argue that large-scale counterurbanization began much earlier than is generally recognized in some parts of southern England. This was not just movement down the urban hierarchy, which as Pooley and Turnbull have demonstrated was a long-term feature of England’s settlement system, but in some cases at least amenity-driven migration to rural areas of the kind increasingly recognized as a core component of recent counterurbanization. Despite a reduction of acreage Berkshire’s rural districts saw a 54% rise in population between 1901 and 1951. The sub-regional pattern of growth is assessed to gauge whether ‘clean break’ migration to the remote west of the county (which remained effectively out of commuting range from London throughout the period) was taking place, or whether counterurbanization was confined to the more accessible eastern districts. However, whilst population did increase in both west and east, it was in fact the central districts that grew most impressively. Three case study parishes are investigated in order to gauge the nature and consequences of counterurbanization at a local level. Professional and business migrants figure prominently, seeking to preserve and promote the rural attributes of their new communities, without however cutting their ties to urban centres. It is argued that migration to rural Berkshire in the first half of the twentieth century cannot adequately be described either as a form of extended suburbanization or an anti-metropolitan ‘clean break’. Rather, early counterurbanization marks the first stage on the long road to a post-productivist countryside, in which countryside becomes detached from agriculture, there is socio-economic convergence between town and country, and the ‘rural’ increasingly becomes defined by landscape and identity rather than economic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is a medical emergency and can cause a neurological damage, affecting the motor and sensory systems. Harnessing brain plasticity should make it possible to reconstruct the closed loop between the brain and the body, i.e., association of the generation of the motor command with the somatic sensory feedback might enhance motor recovery. In order to aid reconstruction of this loop with a robotic device it is necessary to assist the paretic side of the body at the right moment to achieve simultaneity between motor command and feedback signal to somatic sensory area in brain. To this end, we propose an integrated EEG-driven assistive robotic system for stroke rehabilitation. Depending on the level of motor recovery, it is important to provide adequate stimulation for upper limb motion. Thus, we propose an assist arm incorporating a Magnetic Levitation Joint that can generate a compliant motion due to its levitation and mechanical redundancy. This paper reports on a feasibility study carried out to verify the validity of the robot sensing and on EEG measurements conducted with healthy volunteers while performing a spontaneous arm flexion/extension movement. A characteristic feature was found in the temporal evolution of EEG signal in the single motion prior to executed motion which can aid in coordinating timing of the robotic arm assistance onset.