7 resultados para overheating hours
em CentAUR: Central Archive University of Reading - UK
Resumo:
This article examines two genres of text which were extremely popular in the late-medieval and early modern periods, and it pays particular attention to women users. The printed almanacs of sixteenth-century England were enormously influential; yet their contents are so formulaic and repetitive as to appear almost empty of valuable information. Their most striking feature is their astrological guidance for the reader, and this has led to them being considered 'merely' the repository of popular superstition. Only in the last decade have themes of gender and medicine been given serious consideration in relation to almanacs; but this work has focused on the seventeenth century. This chapter centres on a detailed analysis of sixteenth-century English almanacs, and the various kinds of scientific and household guidance they offered to women readers. Both compilers and users needed to chart a safe course through the religious and scientific battles of the time; and the complexities involved are demonstrated by considering the almanacs in relation to competing sources of guidance. These latter are Books of Hours and 'scientific' works such as medical calendars compiled by Oxford scholars in the late middle ages. A key feature of this chapter is that it gives practical interpretations of this complex information, for the guidance of modern readers unfamiliar with astrology.
Resumo:
This paper describes a simplified dynamic thermal model which simulates the energy and overheating performance of windows. To calculate artificial energy use within a room, the model employs the average illuminance method, which takes into account the daylight energy impacting upon the room by the use of hourly climate data. This tool describes the main thermal performance ( heating, cooling and overheating risk) resulting proposed a design of window. The inputs are fewer and simpler than that are required by complicated simulation programmes. The method is suited for the use of architects and engineers at the strategic phase of design, when little is available.
Resumo:
Extreme weather events, including heatwaves, are predicted to increase in both frequency and severity over the coming decades. Low house building rates and a growing population mean there is a need to adapt existing dwellings. Research presented here uses dynamic thermal simulation to model the effect of passive heatwave mitigating interventions for UK dwellings. Interventions include a range of additions and modifications to solar shading, insulation and ventilation. Results are presented for typical end and mid terrace houses, with four orientations, two occupancy profiles and using weather data from the 2003 heatwave. Results show the effectiveness of interventions that reduce solar gains through the building fabric, such as external wall insulation and solar reflective coatings. Internal wall insulation is shown to be less effective and can increase the overheating problem in some cases. Control of solar gains through glazing, using shutters and fixed shading, are also effective, particularly for south, east and west-facing rooms. Results are also presented which demonstrate how it is possible to select combinations of interventions that both eliminate overheating and reduce space heating energy use. The cost of interventions is also considered in the final analysis.
Resumo:
Design summer years representing near-extreme hot summers have been used in the United Kingdom for the evaluation of thermal comfort and overheating risk. The years have been selected from measured weather data basically representative of an assumed stationary climate. Recent developments have made available ‘morphed’ equivalents of these years by shifting and stretching the measured variables using change factors produced by the UKCIP02 climate projections. The release of the latest, probabilistic, climate projections of UKCP09 together with the availability of a weather generator that can produce plausible daily or hourly sequences of weather variables has opened up the opportunity for generating new design summer years which can be used in risk-based decision-making. There are many possible methods for the production of design summer years from UKCP09 output: in this article, the original concept of the design summer year is largely retained, but a number of alternative methodologies for generating the years are explored. An alternative, more robust measure of warmth (weighted cooling degree hours) is also employed. It is demonstrated that the UKCP09 weather generator is capable of producing years for the baseline period, which are comparable with those in current use. Four methodologies for the generation of future years are described, and their output related to the future (deterministic) years that are currently available. It is concluded that, in general, years produced from the UKCP09 projections are warmer than those generated previously. Practical applications: The methodologies described in this article will facilitate designers who have access to the output of the UKCP09 weather generator (WG) to generate Design Summer Year hourly files tailored to their needs. The files produced will differ according to the methodology selected, in addition to location, emissions scenario and timeslice.