3 resultados para organochlorine
em CentAUR: Central Archive University of Reading - UK
Resumo:
The established role of oestrogen in the development and progression of breast cancer raises questions concerning a potential contribution from the many chemicals in the environment which can enter the human breast and which have oestrogenic activity. A range of organochlorine pesticides and polychlorinated bipheryls possess oestrogen-mimicking properties and have been measured in human breast adipose tissue and in human milk. These enter the breast from varied environmental contamination of food, water and air, and due to their lipophilic properties can accumulate in breast fat. However, it is emerging that the breast is also exposed to a range of oestrogenic chemicals applied as cosmetics to the underarm and breast area. These cosmetics are left on the skin in the appropriate area, allowing a more direct dermal absorption route for breast exposure to oestrogenic chemicals and allowing absorbed chemicals to escape systemic metabolism. This review considers evidence in support of a functional role for the combined interactions of cosmetic chemicals with environmental oestrogens, pharmacological oestrogens, phyto-oestrogens and physiological oestrogens in the rising incidence of breast cancer.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
The incidence of breast cancer has risen worldwide to unprecedented levels in recent decades, making it now the major cancer of women in many parts of the world.1 Although diet, alcohol, radiation and inherited loss of BRCA1/2 genes have all been associated with increased incidence, the main identified risk factors are life exposure to hormones including physiological variations associated with puberty/pregnancy/menopause,1 personal choice of use of hormonal contraceptives2 and/or hormone replacement therapy.3–6 On this basis, exposure of the human breast to the many environmental pollutant chemicals capable of mimicking or interfering with oestrogen action7 should also be of concern.8 Hundreds of such environmental chemicals have now been measured in human breast tissue from a range of dietary and domestic exposure sources7 ,9 including persistent organochlorine pollutants (POPs),10 polybrominated diphenylethers and polybromobiphenyls,11 polychlorinated biphenyls,12 dioxins,13 alkyl phenols,14 bisphenol-A and chlorinated derivatives,15 as well as other less lipophilic compounds such as parabens (alkyl esters of p-hydroxybenzoic acid),16 but studies investigating any association between raised levels of such compounds and the development of breast cancer remain inconclusive.7–16 However, the functionality of these chemicals has continued to be assessed on the basis of individual chemicals rather than the environmental reality of long-term low-dose exposure to complex mixtures. This misses the potential for individuals to have high concentrations of different compounds but with a common mechanism of action. It also misses the complex interactions between chemicals and physiological hormones which together may act to alter the internal homeostasis of the oestrogenic environment of mammary tissue.