6 resultados para organic selenium

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public concern over impacts of chemicals in plant and animal production on health and the environment has led to increased demand for organic produce, which is usually promoted and often perceived as containing fewer contaminants, more nutrients, and being positive for the environment. These benefits are difficult to quantify, and potential environmental impacts on such benefits have not been widely studied. This book addresses these key points, examining factors such as the role of certain nutrients in prevention and promotion of chronic disease, potential health benefits of bioactive compounds in plants, the prevalence of food-borne pesticides and pathogens and how both local and global environmental factors may affect any differences between organic and conventionally produced food. This book is an essential resource for researchers and students in human health and nutrition, environmental science, agriculture and organic farming. Main Contents 1. Organic farming and food systems: definitions and key characteristics. 2. The health benefits of n-3 fatty acids and their concentrations in organic and conventional animal-derived foods. 3. Environmental impacts on n-3 content of foods from ruminant animals. 4. Health benefits and selenium content of organic vs conventional foods. 5. Environmental impacts concerning the selenium content of foods. 6. Contaminants in organic and conventional food: the missing link between contaminant levels and health effects. 7. Mycotoxins in organic and conventional foods and effects of the environment. 8. Human pathogens in organic and conventional foods and effects of the environment. 9. What does consumer science tell us about organic foods? 10. The beneficial effects of dietary flavonoids: sources, bioavailability and biological functions. 11. Environmental regulation of flavonoid biosynthesis. 12. Nitrates in the human diet. 13. Impacts of environment and management on nitrate in vegetables and water. 14. Effects of the environment on the nutritional quality and safety of organically produced foods: Round-up and summary.