3 resultados para orchid species
em CentAUR: Central Archive University of Reading - UK
Resumo:
Floral nectar spurs are widely considered to influence pollinator behaviour in orchids. Spurs of 21 orchid species selected from within four molecularly circumscribed clades of subtribe Orchidinae (based on Platanthera s.l., Gymnadenia-Dactylorhiza s.l., Anacamptis s.l., Orchis s.s.) were examined under light and scanning electron microscopes in order to estimate correlations between nectar production (categorized as absent, trace, reservoir), interior epidermal papillae (categorized as absent, short, medium, long) and epidermal cell striations (categorized as apparently absent, weak, moderate, strong). Closely related congeneric species scored similarly, but more divergent species showed less evidence of phylogenetic constraints. Nectar secretion was negatively correlated with striations and positively correlated with papillae, which were especially frequent and large in species producing substantial reservoirs of nectar. We speculate that the primary function of the papillae is conserving energy through nectar resorption and explain the presence of large papillae in a minority of deceit-pollinated species by arguing that the papillae improve pollination because they are a tactile expectation of pollinating insects. In contrast, the prominence of striations may be a 'spandrel', simply reflecting the thickness of the overlying cuticle. Developmentally, the spur is an invagination of the labellum; it is primarily vascularized by a single 'U'-shaped primary strand, with smaller strands present in some species. Several suggestions are made for developing further, more targeted research programmes. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160, 369-387.
Resumo:
Widespread reports of low pollination rates suggest a recent anthropogenic decline in pollination that could threaten natural and agricultural ecosystems. Nevertheless, unequivocal evidence for a decline in pollination over time has remained elusive because it was not possible to determine historical pollination rates. Here we demonstrate a widely applicable method for reconstructing historical pollination rates, thus allowing comparison with contemporary rates from the same sites. We focused on the relationship between the oil-collecting bee Rediviva peringueyi (Melittidae) and the guild of oil-secreting orchid species (Coryciinae) that depends on it for pollination. The guild is distributed across the highly transformed and fragmented lowlands of the Cape Region of South Africa. We show that rehydrated herbarium specimens of Pterygodium catholicum, the most abundant member of the guild, contain a record of past pollinator activity in the form of pollinarium removal rates. Analysis of a pollination time series showed a recent decline in pollination on Signal Hill, a small urban conservation area. The same herbaria contain historical species occurrence data. We analyzed this data and found that there has been a contemporaneous shift in orchid guild composition in urban areas due to the local extirpation of the non-clonal species, consistent with their greater dependence on seeds and pollination for population persistence.
Resumo:
Background and Aims Highly variable, yet possibly convergent, morphology and lack of sequence variation have severely hindered production of a robust phylogenetic framework for the genus Ophrys. The aim of this study is to produce this framework as a basis for more rigorous species delimitation and conservation recommendations. Methods Nuclear and plastid DNA sequencing and amplified fragment length polymorphism (AFLP) were performed on 85 accessions of Ophrys, spanning the full range of species aggregates currently recognized. Data were analysed using a combination of parsimony and Bayesian tree-building techniques and by principal coordinates analysis. Key Results Complementary phylogenetic analyses and ordinations using nuclear, plastid and AFLP datasets identify ten genetically distinct groups (six robust) within the genus that may in turn be grouped into three sections (treated as subgenera by some authors). Additionally, genetic evidence is provided for a close relationship between the O. tenthredinifera, O. bombyliflora and O. speculum groups. The combination of these analytical techniques provides new insights into Ophrys systematics, notably recognition of the novel O. umbilicata group. Conclusions Heterogeneous copies of the nuclear ITS region show that some putative Ophrys species arose through hybridization rather than divergent speciation. The supposedly highly specific pseudocopulatory pollination syndrome of Ophrys is demonstrably 'leaky', suggesting that the genus has been substantially over-divided at the species level.