25 resultados para ontological
em CentAUR: Central Archive University of Reading - UK
Resumo:
Competency management is a very important part of a well-functioning organisation. Unfortunately competency descriptions are not uniformly specified nor defined across borders: National, sectorial or organisational, leading to an opaque competency description market with a multitude of competency frameworks and competency benchmarks. An ontology is a formalised description of a domain, which enables automated reasoning engines to be built which by utilising the interrelations between entities can make “intelligent” choices in different situations within the domain. Introducing formalised competency ontologies automated tools, such as skill gap analysis, training suggestion generation, job search and recruitment, can be developed, which compare and contrast different competency descriptions on the semantic level. The major problem with defining a common formalised ontology for competencies is that there are so many viewpoints of competencies and competency frameworks. Work within the TRACE project has focused on finding common trends within different competency frameworks in order to allow an intermediate competency description to be made, which other frameworks can reference. This research has shown that competencies can be divided up into “knowledge”, “skills” and what we call “others”. An ontology has been created based on this with a simple structure of different “kinds” of “knowledges” and “skills” using semantic interrelations to define the basic semantic structure of the ontology. A prototype tool for analysing a skill gap analysis has been developed. Personal profiles can be produced using the tool and a skill gap analysis is performed on a desired competency profile by using an ontologically based inference engine, which is able to list closest fit and possible proficiency gaps
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Information provision to address the changing requirements can be best supported by content management. The Current information technology enables information to be stored and provided from various distributed sources. To identify and retrieve relevant information requires effective mechanisms for information discovery and assembly. This paper presents a method, which enables the design of such mechanisms, with a set of techniques for articulating and profiling users' requirements, formulating information provision specifications, realising management of information content in repositories, and facilitating response to the user's requirements dynamically during the process of knowledge construction. These functions are represented in an ontology which integrates the capability of the mechanisms. The ontological modelling in this paper has adopted semiotics principles with embedded norms to ensure coherent course of actions represented in these mechanisms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The knowledge economy offers opportunity to a broad and diverse community of information systems users to efficiently gain information and know-how for improving qualifications and enhancing productivity in the work place. Such demand will continue and users will frequently require optimised and personalised information content. The advancement of information technology and the wide dissemination of information endorse individual users when constructing new knowledge from their experience in the real-world context. However, a design of personalised information provision is challenging because users’ requirements and information provision specifications are complex in their representation. The existing methods are not able to effectively support this analysis process. This paper presents a mechanism which can holistically facilitate customisation of information provision based on individual users’ goals, level of knowledge and cognitive styles preferences. An ontology model with embedded norms represents the domain knowledge of information provision in a specific context where users’ needs can be articulated and represented in a user profile. These formal requirements can then be transformed onto information provision specifications which are used to discover suitable information content from repositories and pedagogically organise the selected content to meet the users’ needs. The method is provided with adaptability which enables an appropriate response to changes in users’ requirements during the process of acquiring knowledge and skills.
Resumo:
Business process modelling can help an organisation better understand and improve its business processes. Most business process modelling methods adopt a task- or activity-based approach to identifying business processes. Within our work, we use activity theory to categorise elements within organisations as being either human beings, activities or artefacts. Due to the direct relationship between these three elements, an artefact-oriented approach to organisation analysis emerges. Organisational semiotics highlights the ontological dependency between affordances within an organisation. We analyse the ontological dependency between organisational elements, and therefore produce the ontology chart for artefact-oriented business process modelling in order to clarify the relationship between the elements of an organisation. Furthermore, we adopt the techniques from semantic analysis and norm analysis, of organisational semiotics, to develop the artefact-oriented method for business process modelling. The proposed method provides a novel perspective for identifying and analysing business processes, as well as agents and artefacts, as the artefact-oriented perspective demonstrates the fundamental flow of an organisation. The modelling results enable an organisation to understand and model its processes from an artefact perspective, viewing an organisation as a network of artefacts. The information and practice captured and stored in artefact can also be shared and reused between organisations that produce similar artefacts.
Resumo:
Knowledge recommendation has become a promising method in supporting the clinicians decisions and improving the quality of medical services in the constantly changing clinical environment. However, current medical knowledge management systems cannot understand users requirements accurately and realize personalized recommendation. Therefore this paper proposes an ontological approach based on semiotic principles to personalized medical knowledge recommendations. In particular, healthcare domain knowledge is conceptualized and an ontology-based user profile is built. Furthermore, the personalized recommendation mechanism is illustrated.
Resumo:
Knowledge management has become a promising method in supporting the clinicians′ decisions and improving the quality of medical services in the constantly changing clinical environment. However, current medical knowledge management systems cannot understand users′ requirements accurately and realize personalized matching. Therefore this paper proposes an ontological approach based on semiotic principles to personalized medical knowledge matching. In particular, healthcare domain knowledge is conceptualized and an ontology-based user profile is built. Furthmore, the personalized matching mechanism and algorithm are illustrated.
Resumo:
This paper introduces an ontology-based knowledge model for knowledge management. This model can facilitate knowledge discovery that provides users with insight for decision making. The users requiring the insight normally play different roles with different requirements in an organisation. To meet the requirements, insights are created by purposely aggregated transnational data. This involves a semantic data integration process. In this paper, we present a knowledge management system which is capable of representing knowledge requirements in a domain context and enabling the semantic data integration through ontology modeling. The knowledge domain context of United Bible Societies is used to illustrate the features of the knowledge management capabilities.
Resumo:
Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements.
Resumo:
It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.