131 resultados para oil spill
em CentAUR: Central Archive University of Reading - UK
Resumo:
The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 x 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100g fatty acids, C MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.
Resumo:
Oil-based formulated conidia sprayed on steel plates and conidia powder (control) of Beauveria bassiana isolate IMI 386243 were stored at temperatures from 10 to 40 degrees C in desiccators over saturated salt solutions providing relative humidities from 32 to 88%, or in hermetic storage at 40 degrees C, and moisture contents in equilibrium with 33 or 77% relative humidity. The negative semi-logarithmic relation (P < 0.005) between conidia longevity (at 40 degrees C) and equilibrium relative humidity did not differ (P > 0.25) between formulated conidia and conidia powder. Despite this, certain saturated salts provided consistently greater longevity (NaCl) and others consistently shorter longevity (KCl) for formulated conidia compared to conidia powder. These results, analysis of previous data, and comparison with hermetic storage, indicate that storage of conidia over saturated salt solutions provides inconsistent responses to environment and so may be problematic for bio-pesticide research. In hermetic storage, oil formulation was not deleterious to longevity and in the more moist environment enhanced survival periods. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The objective of the study was to evaluate the cost and environmental impact of replacing traditional corn, which is the main ingredient in poultry diets, with a high-oil corn (HOC) variety. Using linear programming, diets were formulated with either traditional corn or HOC. The results indicate that HOC-based diets cost up to $11.38/tonne less than traditional corn-based diets. Using HOC rather than traditional corn in diets has the potential to reduce the annual nitrogen excreted to the environment from broilers and broiler breeders in Brazil by 6.44 Mtonnes. In addition, there is the potential to reduce P excretion by 4.52 Mtonnes/yr, because the need to supplement diets with inorganic P sources, such as dicalcium phosphate, is much lower with HOC-based diets. We estimate that 28.5 Mtonnes of dicalcium phosphate can be saved annually using HOC in Brazilian poultry diets. The literature suggests that replacing traditional corn with HOC does not affect bird metabolism, while positive impacts on growth rate have been recorded. Therefore, substituting traditional corn with HOC has cost and environmental benefits for the Brazilian poultry industry without compromising productivity.
Resumo:
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.
Resumo:
Eighty-eight multiparous sows were used to evaluate whether type and timing of oil supplementation during gestation influences the incidence of low birth weight (LBW). Sows were allocated (eight per treatment) commercial sow pellets (3 kg/d; control diet) or an experimental diet consisting of control diet plus 10 % extra energy in the form of excess pellets, palm oil, olive oil (OO), sunflower oil (SO) or fish oil; experimental diets were fed during either the first half (G1) or second half (G2) of gestation. Growth performance and endocrine profile of LBW ( < 1·09 kg) and normal birth weight (NBW; 1·46–1·64 kg) offspring were compared. Maternal dietary supplementation altered the distribution curve for piglet birth weight. SOG1 sows had a greater proportion of LBW piglets (P < 0·05), whilst it was reduced in the OOG1 group (P < 0·05). Growth rate of LBW piglets was lower compared with their NBW siblings (P < 0·05) when dietary supplementation was offered in G2 but were similar for G1. At birth, LBW offspring of supplemented animals possessed more fat compared with the control group (P < 0·05); LBW offspring of control animals exhibited a more rapid decline in fat free mass/kg prior to weaning. Plasma metabolites and insulin concentrations were influenced by maternal diet and birth weight. In conclusion, maternal dietary supplementation altered the distribution of piglet birth weights and improved the energy status of LBW piglets. Supplementation with MUFA during G1 reduced the incidence of LBW, whereas PUFA had the reverse effect.
Resumo:
The use of semiochemicals for manipulation of the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae) is being investigated for potential incorporation into a push-pull control strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. The response of M. aeneus to non-host plant volatiles was investigated in laboratory assays to establish whether they have any effect on host plant location behaviour. Two approaches were used. First a novel, moving-air bioassay using air funnels was developed to compare the response of M. aeneus to several non-host plant essential oils. The beetles avoided the host plant flowers in the presence of non-host volatiles, suggesting that M. aeneus uses olfactory cues in host location and/or acceptance. The results were expressed as 'repellency values' in order to compare the effects of the different oils tested. Lavender (Lavendula angustifolia Miller) (Lamiaceae) essential oil gave the highest repellency value. In addition, a four-arm olfactometer was used to investigate olfactory responses, as this technique eliminated the influence of host plant visual and contact cues. The attraction to host plant volatiles was reduced by the addition of non-host plant volatiles, but in addition to masking the host plant volatiles, the non-host volatiles were avoided when these were presented alone. This is encouraging for the potential use of non-host plants within a push-pull strategy to reduce the pest colonisation of crops. Further testing in more realistic semi-field and field trials is underway.
Resumo:
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.