30 resultados para nutrition of fish
em CentAUR: Central Archive University of Reading - UK
Resumo:
Based on the potential benefits to human health, there is interest in developing sustainable nutritional strategies to enhance the concentration of long-chain n-3 fatty acids in ruminant-derived foods. Four Aberdeen Angus steers fitted with rumen and duodenal cannulae were used in a 4 × 4 Latin square experiment with 21 d experimental periods to examine the potential of fish oil (FO) in the diet to enhance the supply of 20 : 5n-3 and 22 : 6n-3 available for absorption in growing cattle. Treatments consisted of total mixed rations based on maize silage fed at a rate of 85 g DM/kg live weight0·75/d containing 0, 8, 16 and 24 g FO/kg diet DM. Supplements of FO reduced linearly (P < 0·01) DM intake and shifted (P < 0·01) rumen fermentation towards propionate at the expense of acetate and butyrate. FO in the diet enhanced linearly (P < 0·05) the flow of trans-16 : 1, trans-18 : 1, trans-18 : 2, 20 : 5n-3 and 22 : 6n-3, and decreased linearly (P < 0·05) 18 : 0 and 18 : 3n-3 at the duodenum. Increases in the flow of trans-18 : 1 were isomer dependent and were determined primarily by higher amounts of trans-11 reaching the duodenum. In conclusion, FO alters ruminal lipid metabolism of growing cattle in a dose-dependent manner consistent with an inhibition of ruminal biohydrogenation, and enhances the amount of long-chain n-3 fatty acids at the duodenum, but the increases are marginal due to extensive biohydrogenation in the rumen.
Resumo:
When formulating least-cost poultry diets, ME concentration should be optimised by an iterative procedure, not entered as a fixed value. This iteration must calculate profit margins by taking into account the way in which feed intake and saleable outputs vary with ME concentration. In the case of broilers, adjustment of critical amino acid contents in direct proportion to ME concentration does not result in birds of equal fatness. To avoid an increase in fat deposition at higher energy levels, it is proposed that amino acid specifications should be adjusted in proportion to changes in the net energy supplied by the feed. A model is available which will both interpret responses to amino acids in laying trials and give economically optimal estimates of amino acid inputs for practical feed formulation. Flocks coming into lay and flocks nearing the end of the pullet year have bimodal distributions of rates of lay, with the result that calculations of requirement based on mean output will underestimate the optimal amino acid input for the flock. Chick diets containing surplus protein can lead to impaired utilisation of the first-limiting amino acid. This difficulty can be avoided by stating amino acid requirements as a proportion of the protein.
Resumo:
Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.
Resumo:
Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.
Resumo:
One definition of food security is having sufficient, safe, and nutritious food to meet dietary needs. This paper highlights the role of plant mineral nutrition in food production, delivering of essential mineral elements to the human diet, and preventing harmful mineral elements entering the food chain. To maximise crop production, the gap between actual and potential yield must be addressed. This gap is 15–95% of potential yield, depending on the crop and agricultural system. Current research in plant mineral nutrition aims to develop appropriate agronomy and improved genotypes, for both infertile and productive soils, that allow inorganic and organic fertilisers to be utilised more efficiently. Mineral malnutrition affects two-thirds of the world's population. It can be addressed by the application of fertilisers, soil amelioration, and the development of genotypes that accumulate greater concentrations of mineral elements lacking in human diets in their edible tissues. Excessive concentrations of harmful mineral elements also compromise crop production and human health. To reduce the entry of these elements into the food chain, strict quality requirements for fertilisers might be enforced, agronomic strategies employed to reduce their phytoavailability, and crop genotypes developed that do not accumulate high concentrations of these elements in edible tissues.
Resumo:
To understand whether genotypic variation in root-associated phosphatase activities in wheat impacts on its ability to acquire phosphorus (P), various phosphatase activities of roots were measured in relation to the utilization of organic P substrates in agar, and the P-nutrition of plants was investigated in a range of soils. Root-associated phosphatase activities of plants grown in hydroponics were measured against different organic P substrates. Representative genotypes were then grown in both agar culture and in soils with differing organic P contents and plant biomass and P uptake were determined. Differences in the activities of both root-associated and exuded phosphodiesterase and phosphomonoesterase were observed, and were related to the P content of plants supplied with either ribonucleic acid or glucose 6-phosphate, respectively, as the sole form of P. When the cereal lines were grown in different soils, however, there was little relationship between any root-associated phosphatase activity and plant P uptake. This indicates that despite differences in phosphatase activities of cereal roots, such variability appears to play no significant role in the P-nutrition of the plant grown in soil, and that any benefit derived from the hydrolysis of soil organic P is common to all genotypes.
Resumo:
The research outlined in this paper highlights the importance of the early nutrition of vegetable crops, and its long-term effects on their subsequent growth and development. Results are also presented to demonstrate how the nutrient supply during the establishment stages of young seedlings and transplants can be enhanced by targeting fertiliser to a zone close to their developing roots. Three different precision fertiliser placement techniques are compared for this purpose: starter, band or side-injected fertiliser. The use of each of these methods consistently produced the same (or greater) yields at lower application rates than those from conventional broadcast applications, increasing the apparent recovery of N, P and K, and the overall efficiency of nutrient use, while reducing the levels of residual nutrients in the soil. Starter fertilisers also advanced the maturity of some crops, and enhanced produce quality by increasing the proportions of the larger and/or more desirable marketable grades. The benefits of the different placement techniques are illustrated with selected examples from research at Warwick HRI using different vegetable crops, including lettuce, onion and carrot.
Resumo:
The p-nitrophenyl phosphomonoesterase assay (p NPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. p NPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of monoester organic P sources in the soil. The importance of the assay to the P nutrition of soil fungi is considered based on the evidence currently available including the consistency of methodological approach. The nature of organic P in the soil and the relevance of the assay to some specific soil substrates is discussed, particularly the chemistry and bioavailability of myo-inositol hexakisphosphate and the lower inositol phosphates. The evidence for the long-term stability of p NPPases in the soil is examined in the light of the persistence of p NPPase in soils. The role of persistent extracellular fungal p NPPases in the soil P cycle is discussed. Conclusions from p NPPase based studies must be based upon an appreciation of the constraints of the assay and the complex chemistry of organic P and p NPPase in the soil.
Resumo:
The p-nitrophenol phosphomonoesterase assay (pNPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. pNPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of organic P sources in the soil. We report here on a series of experiments with the ectomycorrhizal basidiomycete Hebeloma cylindrosporum that highlight components of accepted methodology that might impinge on the reliability of the assay. These include the loss of pNPPase after filtration, inaccuracies in measuring wall-associated enzyme and the ample pool of intracellular pNPPase can be mistakenly measured as external pNPPase if cells are accidentally damaged.
Resumo:
Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.
Resumo:
Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.
Resumo:
Foods derived from animals are an important source of nutrients for humans. Concerns have been raised that due to their SFA content, dairy foods may increase the risk of cardiometabolic disease. Prospective studies do not indicate an association between milk consumption and increased disease risk although there are less data for other dairy foods. SFA in dairy products can be partially replaced by cis-MUFA through nutrition of the dairy cow although there are too few human studies to conclude that such modification leads to reduced chronic disease risk. Intakes of LCn-3 FA are sub-optimal in many countries and while foods such as poultry meat can be enriched by inclusion of fish oil in the diet of the birds, fish oil is expensive and has an associated risk that the meat will be oxidatively unstable. Novel sources of LCn-3 FA such as kirll oil, algae, and genetically modified plants may prove to be better candidates for meat enrichment. The value of FA-modified foods cannot be judged by their FA composition alone and there needs to be detailed human intervention studies carried out before judgements concerning improved health value can be made. Practical applications: The amount and FA composition of dietary lipids are known to contribute to the risk of chronic disease in humans which is increasing and becoming very costly to treat. The use of animal nutrition to improve the FA composition of staple foods such as dairy products and poultry meat has considerable potential to reduce chronic risk at population level although judgements must not be based simply on FA composition of the foods.
Resumo:
The very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are widely recognised to have beneficial effects on human health. However, recommended intakes of VLC n-3 PUFA (450 mg/day) are not being met by the diet in the majority of the population mainly because of low consumption of oil-rich fish. Current mean intake of VLC n-3 PUFA by adults is estimated to be about 282 mg/day with EPA and DHA contributing about 244 mg/day. Furthermore, the fact that only about 27% of adults eat any oil-rich fish (excluding canned tuna) and knowledge of the poor conversion of α-linolenic acid to EPA and DHA in vivo, particularly in men, leads to the need to review current dietary sources of these fatty acids. Animal-derived foods are likely to have an important function in increasing intake and studies have shown that feeding fish oils to animals can increase the EPA and DHA content of the resulting food products. This paper highlights the importance of examining current and projected consumption trends of meat and other animal products when exploring the potential impact of enriched foods by means of altering animal diets. When related to current food consumption data, potential dietary intakes of EPA+DHA from foods derived from animals fed enriched diets are calculated to be about 231 mg/day. If widely consumed, such foods could have a significant impact on progression of conditions such as cardiovascular disease. Consideration is also given to the sources of VLC n-3 PUFA in animal diets, with the sustainability of fish oil being questioned and the need to investigate the use of alternative dietary sources such as those of algal origin.