11 resultados para nutrient content
em CentAUR: Central Archive University of Reading - UK
Resumo:
Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.
Resumo:
Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae-fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scop. (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival and fecundity, while rust infection consistently enhanced individual aphids’ performance. These effects varied in linear relation to lesion or pustule density. However, whole-plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied five days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30% while infection by botrytis with or without rust led to a 38% decrease. The aphids’ responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross-talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores. Key words: Vicia faba, Botrytis cinerea, Uromyces viciae-fabae, tripartite interactions, induced resistance
Resumo:
It has been hypothesized that changes in the marine biological pump caused a major portion of the glacial reduction of atmospheric carbon dioxide by 80 to 100 parts per million through increased iron fertilization of marine plankton, increased ocean nutrient content or utilization, or shifts in dominant plankton types. We analyze sedimentary records of marine productivity at the peak and the middle of the last glacial cycle and show that neither changes in nutrient utilization in the Southern Ocean nor shifts in plankton dominance explain the CO2 drawdown. Iron fertilization and associated mechanisms can be responsible for no more than half the observed drawdown.
Resumo:
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Resumo:
Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.
Resumo:
A study was conducted to investigate the effects of wheat straw ammonisation and supplementation with a rumen undegradable protein (UDP) source on nutrient digestion and nitrogen balance by lambs while diets were supplemented with kibbled carob pods as energy source. Ammonisation increased the crude protein content of wheat straw by nearly 100% and decreased the contents of neutral detergent fibre and acid detergent fibre by 7% and 1.7% respectively. Treating the straw with ammonia resulted in significant (P<0.01) increase in nitrogen (N) intake and intakes of organic matter (OM) and dry matter (DM) tended toward significance (P<0.1). The UDP source had no effect (P>0.05) on DM and OM intakes but resulted in an increase (P<0.05) of N intakes. Both, ammonization and UDP supplementation increased (P<0.01) the DM, OM and N digestibility. In conclusion, the results of this study suggest that ammonisation and UDP supplementation is a practical dietary manipulation option to improve the nutritional status of ruminants fed on roughage-based diets.
Resumo:
Purpose Limited robust randomised controlled trials investigating fruit and vegetable (F&V) intake in people at risk of cardiovascular disease (CVD) exist. We aimed to design and validate a dietary strategy of increasing flavonoid-rich versus flavonoid-poor F&V consumption on nutrient biomarker profile. Methods A parallel, randomised, controlled, dose–response dietary intervention study. Participants with a CVD relative risk of 1.5 assessed by risk scores were randomly assigned to one of the 3 groups: habitual (control, CT), high-flavonoid (HF) or low-flavonoid (LF) diets. While the CT group (n = 57) consumed their habitual diet throughout, the HF (n = 58) and LF (n = 59) groups sequentially increased their daily F&V intake by an additional 2, 4 and 6 portions for 6-week periods during the 18-week study. Results Compliance to target numbers and types of F&V was broadly met and verified by dietary records, and plasma and urinary biomarkers. Mean (±SEM) number of F&V portions/day consumed by the HF and LF groups at baseline (3.8 ± 0.3 and 3.4 ± 0.3), 6 weeks (6.3 ± 0.4 and 5.8 ± 0.3), 12 weeks (7.0 ± 0.3 and 6.8 ± 0.3) and 18 weeks (7.6 ± 0.4 and 8.1 ± 0.4), respectively, was similar at baseline yet higher than the CT group (3.9 ± 0.3, 4.3 ± 0.3, 4.6 ± 0.4, 4.5 ± 0.3) (P = 0.015). There was a dose-dependent increase in dietary and urinary flavonoids in the HF group, with no change in other groups (P = 0.0001). Significantly higher dietary intakes of folate (P = 0.035), non-starch polysaccharides (P = 0.001), vitamin C (P = 0.0001) and carotenoids (P = 0.0001) were observed in both intervention groups compared with CT, which were broadly supported by nutrient biomarker analysis. Conclusions The success of improving nutrient profile by active encouragement of F&V intake in an intervention study implies the need for a more hands-on public health approach.
Resumo:
There are potential nutritional and sensory benefits of adding sauces to hospital meals. The aim of this study was to develop nutrient fortified sauces with acceptable sensory properties suitable for older people at risk of under-nutrition. Tomato, gravy and white sauce were fortified with macro and micro-nutrients using food ingredients rich in energy and protein as well as vitamin and mineral premixes. Sensory profile was assessed by a trained panel. Hedonic liking of fortified compared with standard sauces was evaluated by healthy older volunteers. The fortified sauces had higher nutritional value than the conventional ones, for example the energy content of the fortified tomato, white sauce and gravy formulations were increased between 2.5 and 4 fold compared to their control formulations. Healthy older consumers preferred the fortified tomato sauce compared with unfortified. There were no significant differences in liking between the fortified and standard option for gravy. There were limitations in the extent of fortification with protein, potassium and magnesium, as excessive inclusion resulted in bitterness, undesired flavours or textural issues. This was particularly marked in the white sauce to the extent that their sensory characteristics were not sufficiently optimised for hedonic testing. It is proposed that the development of fortified sauces is a simple approach to improving energy intake for hospitalised older people, both through the nutrient composition of the sauce itself and due to the benefits of increasing sensorial taste and lubrication in the mouth.